Empirical Uses of the Ground Rupture Database Glenn Biasi, University of Nevada Reno * What can we say about the average rupture shape based on available rupture profiles?

* Notes on the use of triangular shapes

* Capturing rupture variability across all published ruptures

* p(d | M) and p(M | d)

Rupture Shape for an Unknown Earthquake

- * Is there an average rupture shape?
- * Does the average shape depend on rupture length?
- * Use data set of rupture profiles from Wesnousky (2008)
- * Subset selected of 24 with length >10 km

Rupture Profile Data (1)

tosya AD: 2.51 m

Rupture Profile Data (2)

- Challenge: how to combine ruptures of different lengths and displacements.
 - Combine using the method in Hemphill-Haley and Weldon (1999) – normalize by average displacement and length
 - * Assume variability of displacements around mean is similar for large and small events.
 - * Compare reversed and not reversed

Mean, 24 Ruptures

Four ruptures <30 km

Five ruptures >200 km

Notes on the Average Rupture Shape

- Including the reflected rupture shapes in effect doubles the data set under the expectation that next events will be similar to past ones.
- Normalizing by d_{ave} removes most of the variability due to stress drop.
 - * If you know the d_{ave} of the next rupture, use it.

Would I be ahead to assume a triangular rupture profile?

Example: 90 km rupture, d_{max}=6 m, d_{ave} = 2.5 m Black: Left triangle Blue: Right triangle, reflection of left triangle Red: Average of both Cases:

(1)Assume left triangle, next rupture is left triangle. Mean error: 0

(2) Assume left triangle, next rupture is right triangle. Mean error 1.25 m.

(3) Assume mean, get either triangle: Mean error 0.625 m (about half)

(4) Assume mean, get nontriangle: Mean error <0.625 m

Conclusion: If you know the shape of the next rupture, use it. If not, use the mean rupture shape.

Other Uses of the Normalized Rupture

Profiles

Variability averaged

The variability of rupture displacement can be represented by an empirical probability density function.

 Make a histogram of d_{obs}/d_{ave} using all events -> p(d)

Probability of the d_{obs} as a Function of Magnitude

using your favorite M-> d_{ave} relationship -> p(d_{obs} | M)

Probability of Magnitude Given a Displacement Observation

- Gather probabilities for all magnitudes considered and renormalize.

-Result is $p(M | d_{obs})$, the probability of an earthquake magnitude given one observation of displacement, d_{obs} .

-One can do better if more information is available. E.g. a prior distribution of earthquake magnitudes, an M_{max}, or a probability of ground rupture vs. magnitude.

Concluding Remarks

- The robustness of the average rupture shape suggests some constancy in mechanical behavior among faults.
 - sqrt(sin(x/2L)) works pretty well as an average rupture shape
- Normalizing by length and average displacement flattens differences in stress drop
 - * $M_o = mu^*L^*W^*d_{ave}$
 - * If the stress drop of the next earthquake is known, it can be used to improve estimates.
- Under moderate assumptions rupture displacement variability from all documented ruptures can be encapsulated and used. E.g.,

* $p(d_{obs} | M)$ and $p(M | d_{obs})$