

Surface Rupture Earthquakes

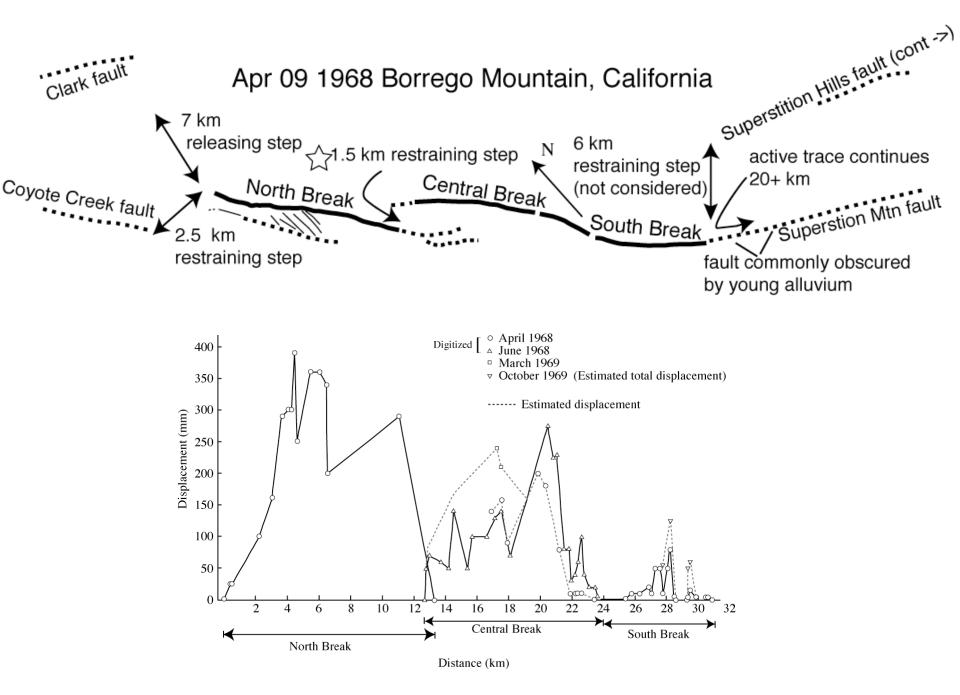
Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic hazard analysis and the earthquake rupture process.

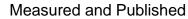
Steven G. Wesnousky

STRIKE-SLIP (22)

1906 San Andreas, CA 1891 Neo-Dani, Japan 1930 Kita-Izu, Japan 1939 Ercincan, Turkey 1940 Imperial Valley, CA 1942 Erbaa-Niksar, Turkey 1943 Tosya, Turkey 1943 Tottori, Japan 1944 Gerede-Bolu, Turkey 1967 Mudurnu, Turkey 1968 Borrego Mtn, CA 1979 Imperial Valley, CA 1981 Sirch, Iran 1987 Superstition Hills, CA 1990 Luzon, Philippines 1992 Landers, CA 1999 Fandoga, Iran 1999 Hector Mine, CA 1999 Izmit, Turkey 1999 Duzce, Turkey 2001 Kunlun, China 2002 Denali, AK

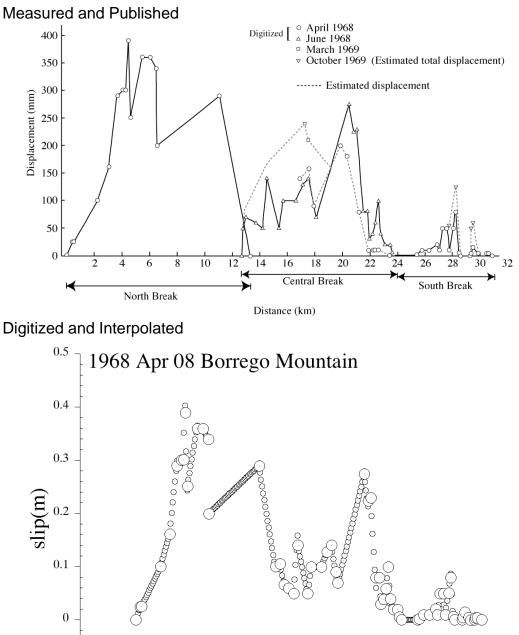
NORMAL (7)


1887 Sonora, MX
1915 Pleasant Valley, NV
1954 Fairview Peak, NV
1954 Dixie Valley, NV
1959 Hebgen Lake, MT
1983 Borah Peak, ID
1987 Edgecumbe, NZ


REVERSE (8)

1896 Rikuu Japan

- 1945 Mikawa, Japan
- 1971 San Fernando
- 1979 Cadoux, Australia
- 1980 El Asnam
- 1986 Maryat, Australia
- 1998 Tenant Creek, Australia
- 1999 Chi-Chi, Taiwan

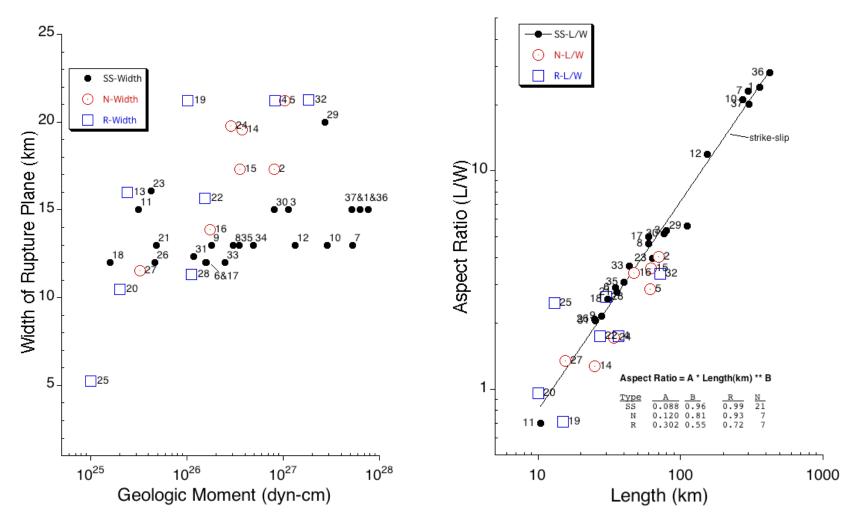

37 Earthquakes

-0.1

-5

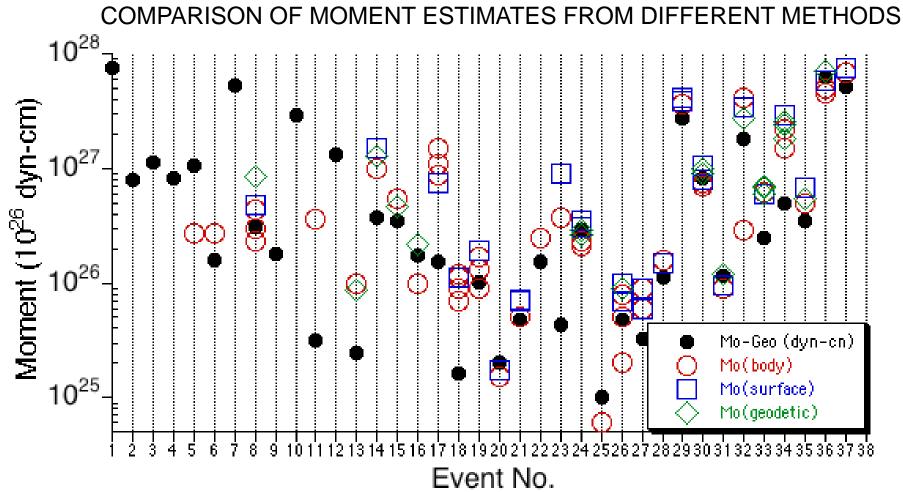
distance(km)

Interpo	lated	Digitized					
distance(km)	slip(m)	distance(km)	slip(m)				
interpolated	interpolated	digitized	digitized				
0.10000	0.0062074	0.0000	0.0000				
0.20000	0.012415	0.39557	0.024554				
0.30000 0.40000	0.018622 0.025270	0.50633 2.2310	0.025347 0.10020				
0.50000	0.025985	3.0538	0.16119				
0.60000	0.029687	3.7025	0.28951				
0.70000	0.034027	4.0981	0.30020				
0.80000	0.038367	4.2880	0.30059				
0.90000	0.042707	4.4620	0.38970				
1.0000	0.047047	4.6519	0.25109				
1.1000	0.051387	5.5063	0.35921				
1.2000	0.055727	6.0443	0.35960				
1.3000	0.060067	6.5032	0.33941				
1.4000	0.064407	6.5506	0.19921				
1.5000	0.068747	11.060	0.28951				
1.6000	0.073087	12.532	0.099802				
1.7000	0.077427	12.927	0.10495				
1.8000	0.081767	13.291	0.065743				
1.9000	0.086107	13.703	0.059010				
2.0000	0.090447	14.193	0.049109				
2.1000	0.094787	14.525	0.13980 0.049109				
2.2000	0.099127 0.10761	15.411 15.712	0.099010				
2.4000	0.10781	16.630	0.099010				
2.5000	0.12244	17.136	0.12792				
2.6000	0.12985	17.532	0.13980				
2.7000	0.13726	17.927	0.089901				
2.8000	0.14467	18.117	0.068911				
2.9000	0.15209	20.490	0.27406				
3.0000	0.15950	20.823	0.22376				
3.1000	0.18097	21.076	0.22891				
3.2000	0.20075	21.519	0.079604				
3.3000	0.22053	21.820	0.079604				
3.4000	0.24031	21.962	0.029703				
3.5000	0.26009	22.215	0.038416				
3.6000	0.27987	22.421	0.058614				
3.7000	0.29965	22.627	0.099010				
3.8000	0.29221	22.801	0.039208				
3.9000	0.29491	23.101	0.019010				
1.0000	0.29761	23.465	0.019010				
1.1000	0.30041	23.623	0.0051485				
1.2000	0.30062	23.829	0.00039604				
1.3000	0.35179	25.237	0.0000				
4.4000	0.40299	25.396	0.0015842				
1.5000 1.6000	0.31670 0.24370	25.791	0.0095050				
1.7000	0.24370	26.298 26.851	0.0095050 0.020198				
	0.27640		0.0095050				
1.8000 1.9000	0.28905	27.041 27.263	0.049109				
5.0000	0.30171	27.563	0.049109				
5.1000	0.31436	27.753	0.0095050				
5.2000	0.32701	28.054	0.049901				
5.3000	0.33967	28.212	0.078812				
5.4000	0.35232	28.449	0.0055446				
5.5000	0.36497	28.576	0.0000				
5.6000	0.35928	29.272	0.0000				
5.7000	0.35936	29.335	0.0039604				
5.8000	0.35943	29.478	0.014653				
5.9000	0.35950	29.858	0.0043564				
5.0000	0.35958	30.016	-0.00039604				
5.1000	0.35520	30.348	0.0000				
5.2000	0.35080	30.427	0.0035644				
5.3000	0.34640	30.601	0.0035644				
5.4000	0.34200	31.000	0.0000				
5.5000	0.33759						
5.6000	0.20121						
5.7000	0.20321						
5.8000	0.20522						
5.9000	0.20722						
7.0000	0.20922						
7.1000	0.21122						
7.2000	0.21323						


Table	1:	Geological	Observations
-------	----	------------	---------------------

#	Date	Location	Туре	Length (km)	Average Slip (m)	Max Slip (m)	Depth (km)	rigidity 10 ¹¹ dyn/cm ²	Geologic Moment 10 ²⁶ dyn-cm	Potency 10 ¹⁵	M., ^g	Ref	N ot es
29	1998-Mar-14	Fandoqa, IRN	ssn/54	25	1.1 [1.1]	3.1 [3.1]	10	3.3	1.2	.36	6.6	50	ag
30	1999-Sep-21	Chi-Chi, Taiwan	r/70	72	3.5 [4.0]	12.7 [16.4]	20	3.0	18.4	6.1	7.3	23	ad
31	1999-Oct-16	Hector Mine, CA.	ssr	44	1.45-1.6	5.2-5.2	12	3.0	2.9	1.0	6.9	57	an
32	1999-Aug-17	Izmit, TUR	ssr	107 (145)	1.1	5.1	13	3.2	4.9	1.6	7.1	47	ae
33	1999-Nov-12	Duzce, TUR	ssr	40	2.1	5.0	13	3.2	3.5	1.1	7.0	24	af
34	2001-Nov-14	Kunlun, China	ssl	421	3.3	8.7	15	3.0	62.1	18.8	7.8	53	al
35	2002-Nov-03	Denali, AK	ssr	302	3.6	8.9	10	3.2	33.5	10.5	7.6	52	ak

Table 2: Seismological Observations


#	Date	Location	Logation Tune	Seismic Moment 10 ²⁶ dyn-cm			Potency (Mo/				Ref	Notes	
#		Location	Location Iy	Туре –	body	long-period	geodetic	range	body	long- period	geodetic	_	KCI
29	1998-Mar-14	Fandoqa, IRN	ssn	0.91(3.3)	0.95 (4.4)	1.2(3.4)	1.05±0.145	.28	.22	.35	.284±.069	50	bag
30	1999-Sep-20	Chi-Chi, Taiwan	r/70	29(2.1) 41(3.0)	34(4.4)	27(3)	34±7	13.8 13.7	7.7	9.0	10.8±3.04	26	bad
31	1999-Oct-16	Hector Mine,CA	ssr	6.2(3*)	6.0(4.4)	6.8(3*) 5.9(3*) 7.0(3.1)	6.45±0.55	2.1	1.4	2.3 2.0 2.3	1.8±0.45	58	bal
32	1999-Aug-17	Izmet, TUR	SST	22(3.3) 15(3.5)	28.8(4.4)	24(3.3) 18(3.3) 26(3.4)	21.9±6.9	6.7 4.3	6.6	7.3 5.4 7.7	5.97±1.7	38	bae
33	1999-Nov-12	Duzce, TUR	ssr	5.0(3*)	6.7 H(4.4)	5.4(3.0)	5.4±1.3	167	1.52	1.80	$1.66 \pm .14$	37	baf
34	2002-Nov-14	Kunlun, China	ssl	46(3) 50(3.0)	59(4.4)	71(3 *)	58.5±12.5	15.3 16.7	13.4	23.6	18.5±5.1	55	bai
35	2002-Nov-03	Denali, AK	SSI	68(3.3) 38(3*) 49(3*) 56(3)	75(2.6)		56.5±18.5	20.1 12.7 16.3 18.7	28.8		20.7±8.1	54	baj

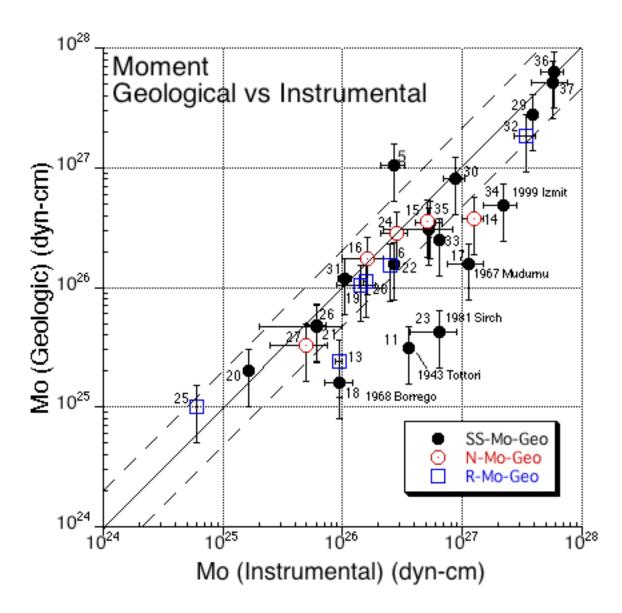
CHARACTERISTICS OF DATA SET

W versus L

Aspect Ratio (L/W) versus L (Slope of 1 if constant W)

Geologic Mo - Black

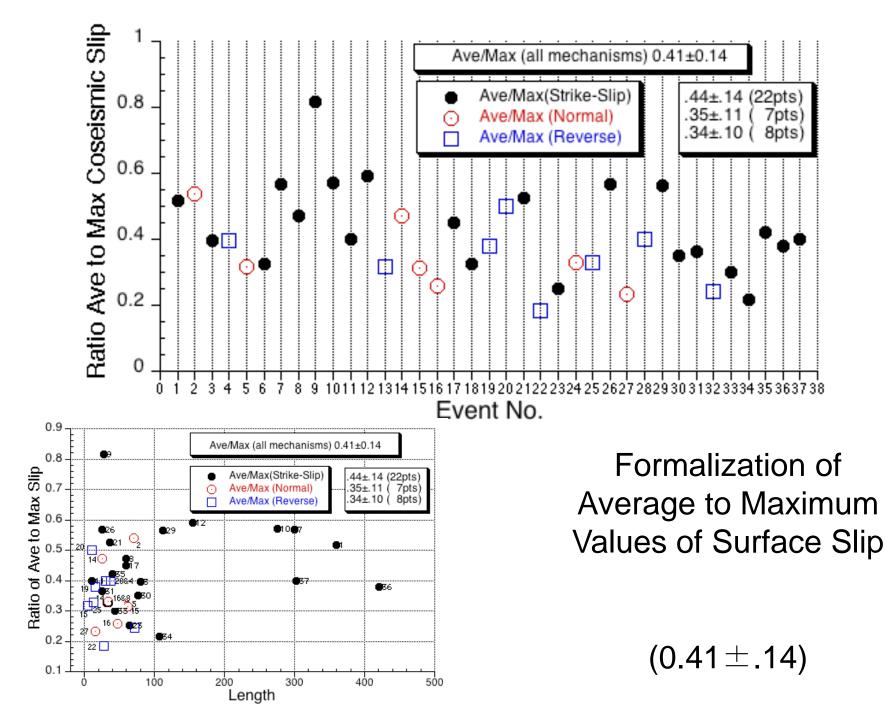
Body Wave Mo - Red

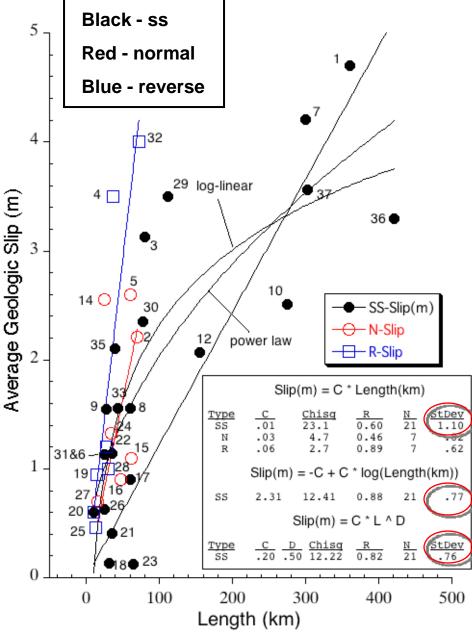

Surface Wave Mo - Blue

Geodetic Mo - Green

Tendencies

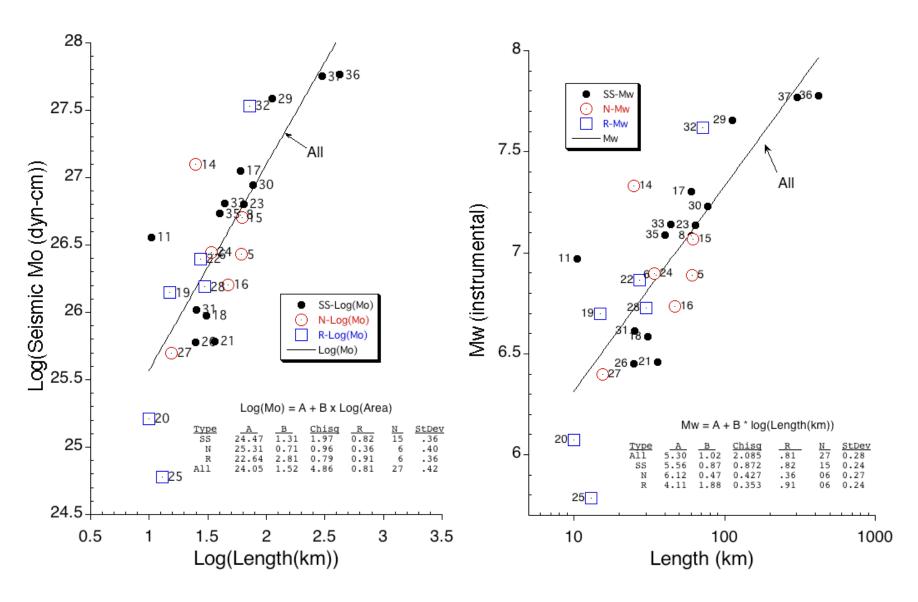
Geo Mo similar to Instr for many, but not all...


Green(Geodetic) not consistently on top

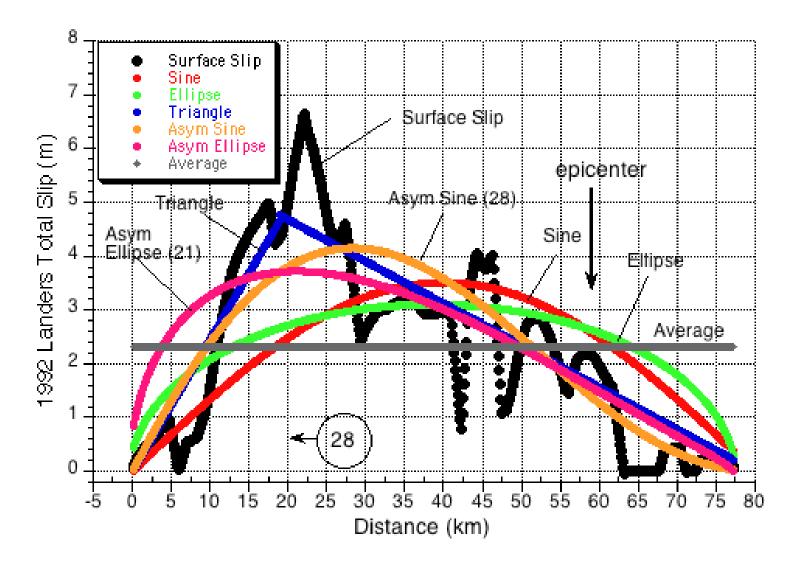

Geologic estimates generally within ~factor of 2 given uncertainties.

Vertical error bar is factor of 3 of value - assumed for refrence

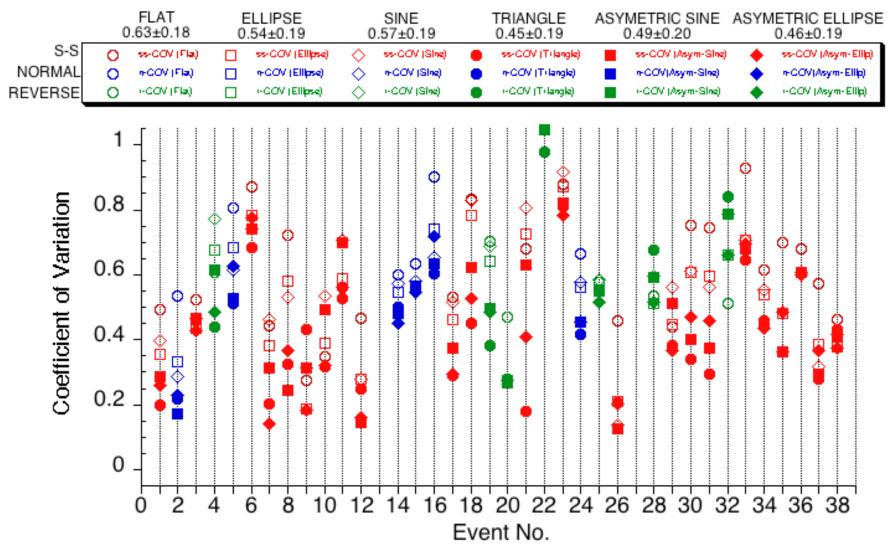
Horizontal error bar is range of estimates of moment determined from various instrumental methods

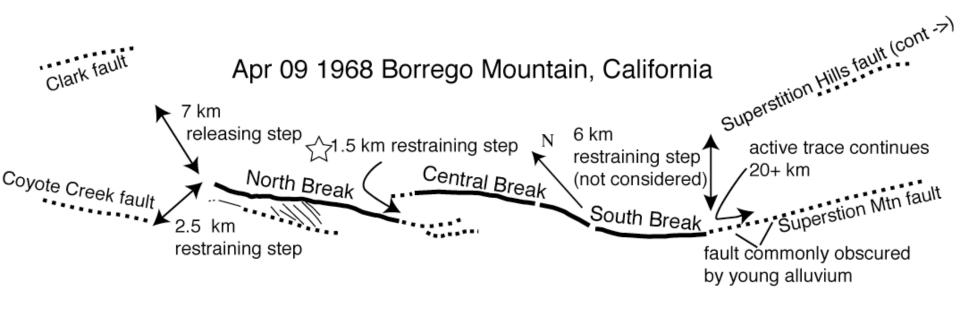

Surface Slip versus Rupture Length

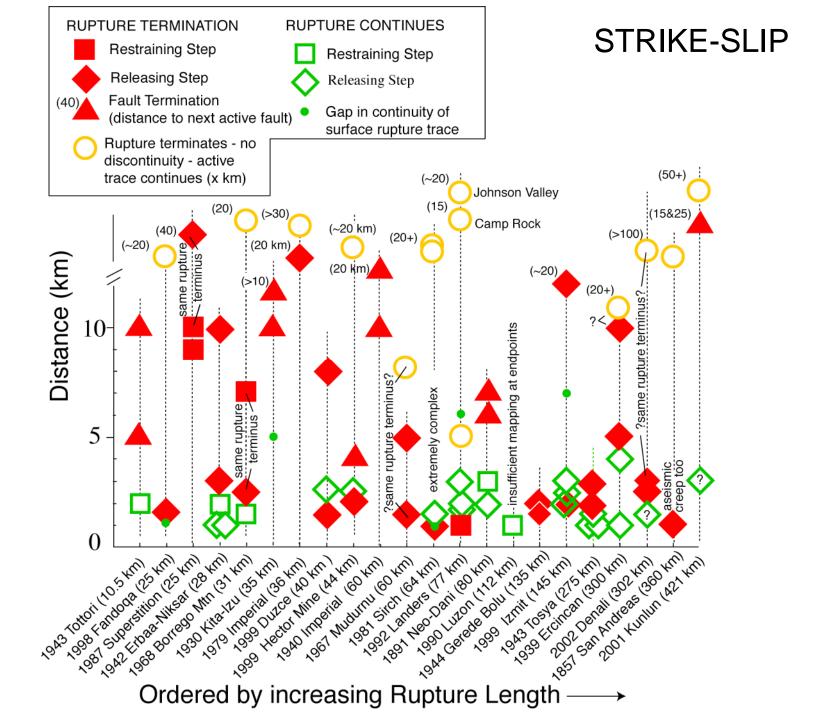
Relationship for reverse and normal may be linear but may NOT so for strike-slip


Mo vs L

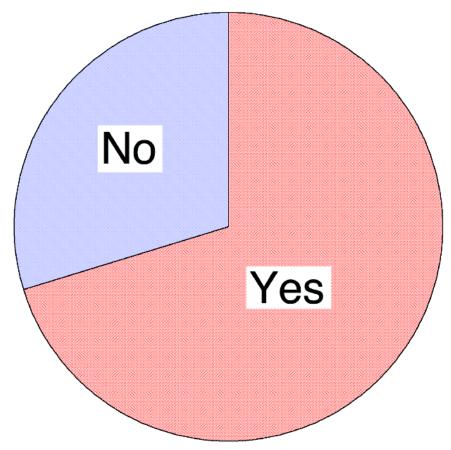
Mw vs L


Regressions of size to length limited to surface rupture quakes

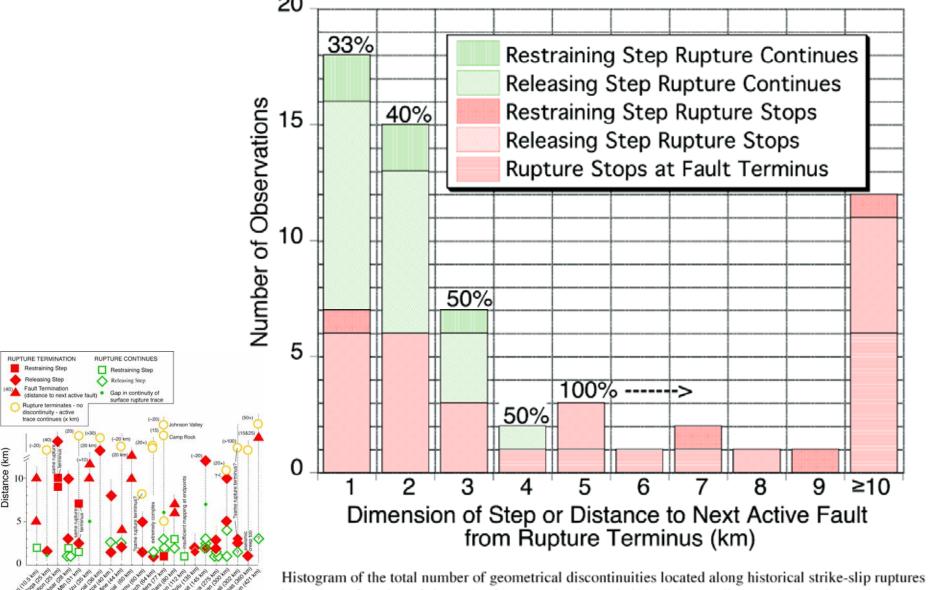

Towards quantifying the shape of Slip distributions and estimating the amount of slip expected at a site on a fault of given length


Coefficient of Variation

Standard deviation of particular curve-fit to observed slip and then divided by average value of slip



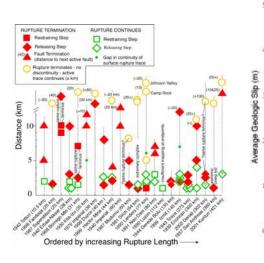
Turn attention back to fault geometry



Is termination of STRIKE-SLIP rupture associated with step in fault trace of dimension >=1km or end of active fault trace ?

Pie chart of total number of rupture endpoints divided between whether (red-yes) or not (blue-no) endpoints are associated with a geometrical discontinuity (step or termination of rupture trace). About 2/3 of time rupture endpoints are associated with such discontinuities. The remainder appear to simply die out along an active fault trace. Sample Size is 46.

Summary of behavior of all discontinuities along strike of historical earthquake ruptures.



Ordered by increasing Rupture Length -----

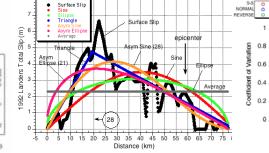
Histogram of the total number of geometrical discontinuities located along historical strike-slip ruptures binned as a function of size (≥ 1 , ≥ 2 , etc) and color-coded/shaded according to whether the particular step occurred at the endpoint of rupture (red) or was broken through by the rupture (green).

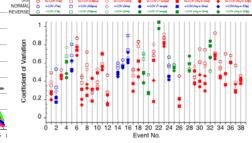
So all the basics (at least for strike-slip faults) are here to estimate amount of surface displacement at a site.

Define expected rupture length

Estimate expected average slip

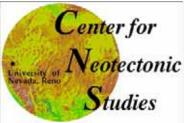
200 3 Length (km) SS-Sipon


sw __E]- R-Slp


4 🗖

14 0

Use coefficient of variation to estimate uncertainty (std) at respective point



Wesnousky, S. G., (2008) Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic hazard analysis and the earthquake rupture process, Bulletin of the Seismological Society of America, 98, 4, 1609-1632

Wesnousky, S. G. (2006), Predicting the endpoints of earthquake ruptures, Nature, 444, 358-360, doi:10.1038/nature0525)

Both with data and appendices can be downloaded at

http://neotectonics.seismo.unr.edu

