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Relation to previous published work on PFDH

• Previous published work on PFDH:
Youngs et al., Earthquake Spectra, 2003, 19(1): 191-219. 
Stepp et al.,  Earthquake Spectra 2001; 17(1): 113-151.

Methodology and results aimed at application to the 
potential Yucca Mountain nuclear waste repository site 
in Nevada.

• Our work –scaling models specific for California, and 
compatible with our scaling models we use for the 
other modules of our EQRISK program for assessment 
of: ground shaking, liquefaction initiation, and peak 
ground strain hazard (Lee and Trifunac, 1987; Trifunac, 
1991; Todorovska and Trifunac, 1996, 1999).



Outline
• General methodology.

Considers only earthquakes on the main fault, which 
are the main cause for the dislocation across the fault 
(principal faulting in Youngs et al.). 
Simpler than PSHA for ground shaking – involves only 
one fault.

• Results for two hypothetical faults, Class A and B
Class A: the most active faults, with average slip rate  > 
5 mm/year (like the San Andreas Flt).
Class B: all other faults (like the Palos Verdes Flt 
crossed by the Vincent Thomas Bridge).



Motivation

• Vincent Thomas Bridge, crosses the Palos
Verdes Fault in Los Angeles Area 

• San Diego–Coronado Bay Bridge , Rose 
Canyon Fault Zone 

• Bart Tunnel, and Clermont Water Tunnel, both 
crossing the Hayward Fault in northern 
California 



Model



Methodology

• D - random variable representing, for an 
earthquake that has ruptured the ground surface, 
the absolute value of the displacement across the 
rupture at the ground surface

• Dsite - displacement at the site, which may or may 
not have been affected by the earthquake 

( ) { }site,p d t P D d t= >



Methodology
• Assumption: Earthquakes occurrence is a Poissonian or a 

generalized Poissonian process.
• Then                        is  Selective Poissonian process
• Expected number of exceedances

{ }siteD d t>

( ) expected number of earthquakes 
           of magnitude  during exposure ,
           we get it from the adopted Gutenberg-Richter law 
          for the fault 
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Methodology

• Conditional probability
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Methodology

Finally:
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Probability that rupture breaks the surface
for a generic model
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Probability that rupture extends to the site
for a generic model

( )
( )
( ) ( ) ( )

( ) ( ) ( )

( )

1,rupture 
extends

min 1, , ,
horizontally 2
to the site

2min 1, , ,
2

, ,

R

R
R R

R

R R
R

L R

L M L

L M LP L M L x L M
L L M

L x LL M L x L M
L L M

r L L x

⎧
⎪
⎪
⎪

≥⎪⎧ ⎫
⎪⎪ ⎪ ⎛ ⎞⎪ ⎪ ⎪= < ≤ −⎜ ⎟⎨ ⎬ ⎨ ⎜ ⎟−⎝ ⎠⎪ ⎪ ⎪

⎪ ⎪ ⎪⎩ ⎭ ⎛ ⎞⎪ −⎜ ⎟⎪ < > −⎜ ⎟⎪ −⎜ ⎟⎪ ⎝ ⎠⎩

≡  fault length
rupture lengthR

L
L
=
=

 distance of the site from the center of the faultx =



Rupture length and width, LR and WR



Rupture length and width

10log ( ) 0.5113 1.9341RL M M= −

10log ( ) 0.2292 0.5128RW M M= −

We use our fit through a subset of the data in 
Wells and Coppersmith, 1994, for California 
earthquakes:



If we want to consider the uncertainty in in 
rupture length and width estimates
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Displacement across fault, D



Displacement across fault at surface

• Lee et al. (1995) with 
• Mag + site + soil + % rock path model 
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Displacement across fault at surface

• D is lognormal:
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Results for two hypothetical faults (vertical)
• Fault I (Class B)
• 2/3 and 1/3 

partitioning of seismic 
moment between 
characteristic and 
Gutenberg-Richter 
events

• Fault II (Class A)
• three variants of 

distribution of seismic 
moment

22
0 38 10 dyn cm/yr

b=0.8
M = × ×

24
0 ( ) 4.45 10 dyn cm/yrM GR = × ×

24
0 ( ) 8.9 10 dyn cm/yrM Char = × ×

100 km;  18 kmL W= =

100 km;  13 kmL W= =

Exposure 50 yrst = =



Fault I (Class B): earthquake rates
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Fault I (Class B):  P(site will be affected)
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Fault I (Class B):  Results
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Fault I (Class B):  Results (cont.)
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Fault II (Class A): earthquake rates
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Fault II (Class A):  P(site will be affected)

0.0

0.2

0.4

0.6

0.8

1.0

3 4 5 6 7 M

rL rL* rW

rW

Probabilities that a rupture 
will affect the site

L =100 km
W =18 km

x=0



Fault II (Class A):  Results
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Conclusions

• Fault displacement hazard is generally small  
as only one fault contributes to the hazard, 
and not every earthquake affects the site.

• The results are quite sensitive to how the 
seismic moment is distributed over 
earthquake magnitudes.

• The hazard is the largest near the center of 
the fault.



Conclusions

• For a specific application, fault specific 
information should be used, to the extent 
possible, e.g. to define probabilities that 
rupture will break the ground surface and 
will affect the site, and for distribution of 
rupture along the fault.
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