Fault Displacement Hazard Analysis, Hetch -Hetchy Aqueduct System, SF Bay Area: Northern Calaveras, Southern Hayward, and San Andreas Faults

Surface Fault Displacement Hazard Workshop

May 20-21, 2009

PEER, UC Berkeley, Berkeley, California

Steve Thompson, Dan O'Connell, and Keith Kelson *Fugro-WLA, Inc.*Walnut Creek, California

Purpose

- SFPUC General Seismic Design Requirements (2006; 2008)
- Achieve system-wide performance goals following major Bay Area earthquake
- Desire for uniform approach to determine design displacements for major pipeline fault crossings
- 475- and 975-year return period displacements

Fault Displacement Hazard Analysis Methodology

$$v(d) = \sum_{n} \alpha_{n}(M^{0}) \int_{M_{n}^{0}}^{M_{n}^{u}} f_{n}(M) \left[\int_{0}^{0.5} f_{n}(r \mid M) \cdot P_{n}(D > d \mid M, r) \cdot P_{n}(D > 0 \mid M) \cdot dr \right] dM$$

Parameters:

- Fault rupture model: magnitude and rate distribution
- Probability of surface-fault rupture
- Displacement versus magnitude relation
- Variability in displacement along rupture r = x/L
- Separate treatment of fault creep, slip direction, secondary rupture, etc...

Rupture Model

(After 2002 WGCEP)

Southern Hayward:

HS only: 6.7

HS+HN: 6.9

H+RC: 7.25

Floating: 6.9

Northern Calaveras:

CN only: 6.8

Floating: 6.2

C_all: 6.9

CN+CC: 6.9

Peninsula San Andreas:

1906 repeat: 7.9

SAP+SAS: 7.4

Floating: 6.9

SAP only: 7.15

From 2002 WGCEP

Rupture Model (cont.)

WG02 model simulations

WG02, Table 4.8. Long-term magnitudes and occurrence rates of rupture sources.										
		Mean magnitude			Occurrence rate (/yr)			Recurrence interval (yr)		
Fault Name	Rupture Source	Mean	2.5%	97.5%	Mean	2.5%	97.5%	Mean	2.5%	97.5%
San Andreas	SAS	7.03	6.84	7.22	0.0007	0	0.0015	1402	646	
	SAP	7.15	6.95	7.32	0.0005	0	0.0010	2017	967	∞
	SAN	7.45	7.28	7.61	0.0001	0	0.0008	7180	1316	000
	SAO	7.29	7.12	7.44	0.0002	0	0.0011	4540	897	00
	SAS+SAP	7.42	7.26	7.56	0.0010	0.0002	0.0029	1037	343	4863
	SAP+SAN	7.65	7.48	7.79	0	0	0	00	00	00
	SAN+SAO	7.70	7.53	7.86	0.0012	0.0004	0.0035	809	282	2772
	SAS+SAP+SAN	7.76	7.59	7.92	0.00002	0	0.0001	42489	8240	00
	SAP+SAN+SAO	7.83	7.65	8.01	0.0001	0	0.0004	13046	2676	∞
	SAS+SAP+SAN+SAO	7.90	7.72	8.10	0.0026	0.0012	0.0042	378	239	808
	floating	6.90	6.90	6.90	0.0009	0.0001	0.0019	1104	536	7723
Hayward/RC	HS	6.67	6.36	6.93	0.0034	0.0012	0.0069	292	144	830
	HN	6.49	6.18	6.78	0.0032	0.0011	0.0069	312	146	907
	HS+HN	6.91	6.68	7.12	0.0024	0.0009	0.0047	413	211	1100
	RC .	6.98	6.81	7.14	0.0040	0.0023	0.0063	250	159	438
	HN+RC	7.11	6.94	7.28	0.0005	0	0.0013	2086	766	00
	HS+HN+RC	7.26	7.09	7.42	0.0003	0.0001	0.0007	3524	1511	19158
	floating	6.90	6.90	6.90	0.0003	0.0001	0.0006	3524	1706	7294
Calaveras	CS	5.79	0.00	6.14	0.0075	0	0.0158	134	63	00
	œ	6.23	5.75	6.68	0.0054	0.0025	0.0097	184	103	397
	CS+CC	6.36	5.87	6.75	0.0018	0	0.0065	541	155	00
1	CN	6.78	6.58	6.97	0.0035	0.0015	0.0065	284	154	685
1	CC+CN	6.90	6.68	7.11	0.0001	0	0.0011	10958	924	00
1	CS+CC+CN	6.93	6.72	7.14	0.0006	0	0.0018	1555	543	000
1	floating	6.20	6.20	6.20	0.0030	0.0009	0.0077	331	130	1158
	floating CS+CC	6.20	6.20	6.20	0.0120	0.0025	0.0285	83	35	405

Probability of Surface -Fault Rupture

Wells and Coppersmith (1993):

M6.8 = 81% probability

M7.0 = 87% probability

(Global dataset, 276 earthquakes)

For S. Hayward and N. Calaveras:

 $P(D > 0 \mid M) = 1$

Northern Calaveras Fault, Valley Crest Nursury, Sunol Valley

Displacement – Magnitude Relation

From Treiman et al. (2002) as provided by Wesnousky (2008)

From Treiman et al. (2002) as provided by Wesnousky (2008)

Along-strike COV (SFPUC, 2006)

Hemphill-Haley and Weldon (1999) = 14 events; COV ~ 0.85

Wesnousky (2008) = 20 strike-slip events; $COV = 0.6 \pm 0.2$

Combined $\sigma \log(AD) = 0.39$

Alternative: Variability in Displacement at a Point

D/AD versus x/L (Youngs et al., 2003; Petersen et al., 2005)

D/AD versus x/L - Scale factor that averages to D/AD = 1

Results – PFDHA, S. Hayward Fault

Results – PFDHA, S. Hayward Fault

475-year (10% in 50 yr)

- Mean = 2.9 ft (0.9 m)
- ± 1 standard deviation = 1.7 to 3.9 ft (0.5 to 1.2 m)

975-year (5% in 50 yr)

- Mean = 4.8 ft (1.5 m)
- ± 1 standard deviation =
 3.2 to 6.1 ft (1.0 to 1.9 m)

deviatio

Results – PFDHA, N. Calaveras Fault

Results – PFDHA, N. Calaveras Fault

475-year (10% in 50 yr)

- Mean = 2.3 ft (0.7 m)
- ± 1 standard deviation = 1.2 to 3.2 ft (0.4 to 1.0 m)

975-year (5% in 50 yr)

- Mean = 3.9 ft (1.2 m)
- ± 1 standard deviation =
 2.6 to 5.0 ft (0.8 to 1.5 m)

deviatio

Results – PFDHA, San Andreas fault

475-year (10% in 50 yr)

- Mean = 14.1 ft (4.3 m)
- ± 1 standard deviation = 7.4 to 19.8 ft (2.3 to 6.0 m)

975-year (5% in 50 yr)

- Mean = 27.5 ft (8.4 m)
- ± 1 standard deviation =
 21 to 33.5 ft (6.4 to 10 m)
- Hecker and Abrahamson
 (2004) approach yields
 ~16.5 to 20.5 ft (5 to 6

deviatio

Discussion Points

- Variability/uncertainty in expected displacement from empirical approach is large, but less than for ground motions
- Values get ridiculous at upper end; need to truncate log -normal distribution?
- Uncertainty intended to guide engineering judgment and factor of safety
- These values are starting points for displacement characterization: distribution of slip, slip direction, creep, expected afterslip, secondary fault-rupture hazard...
- Slip-at-a point approach promising, but has limits.

