Fault Displacement Hazard Analysis, Hetch Hetchy Aqueduct System, SF Bay Area:
 Northern Calaveras, Southern Hayward, and San Andreas Faults

Surface Fault Displacement Hazard Workshop
May 20-21, 2009
PEER, UC Berkeley, Berkeley, California

Steve Thompson, Dan O'Connell, and Keith Kelson Fugro-WLA, Inc.
Walnut Creek, California

Purpose

- SFPUC General Seismic Design Requirements (2006; 2008)
- Achieve system-wide performance goals following major Bay Area earthquake
- Desire for uniform approach to determine design displacements for major pipeline fault crossings
- 475- and 975-year return period displacements

Fault Displacement Hazard Analysis Methodology

$$
v(d)=\sum_{n} \alpha_{n}\left(M^{0}\right) \int_{M_{n}^{0}}^{M_{n}{ }^{u}} f_{n}(M)\left[\int_{0}^{0.5} f_{n}(r \mid M) \cdot P_{n}(D>d \mid M, r) \cdot P_{n}(D>0 \mid M) \cdot \mathrm{d} r\right] \mathrm{d} M
$$

Parameters:

- Fault rupture model: magnitude and rate distribution
- Probability of surface-fault rupture
- Displacement versus magnitude relation
- Variability in displacement along rupture $r=x / L$
- Separate treatment of fault creep, slip direction, secondary rupture, etc...

Rupture Model
 (After 2002 WGCEP)

Southern Hayward: HS only: 6.7
HS+HN: 6.9
H+RC: 7.25
Floating: 6.9
Northern Calaveras:
CN only: 6.8
Floating: 6.2
C_all: $\quad 6.9$
$\mathrm{CN}+\mathrm{CC}: 6.9$

Peninsula San Andreas: 1906 repeat: 7.9 SAP+SAS: 7.4 Floating: 6.9

From 2002 WGCEP SAP only: 7.15

Rupture Mode」 (cont.)

- WG02 model simulations

	Rupture Source	Mean	2.5\%	97.5\%	Mean	2.5\%	97.5\%	Mean	2.5\%	97.5\%
San Andreas	SAS	7.03	6.84	7.22	0.0007	0	0.0015	1402	646	
	SAP	7.15	6.95	7.32	0.0005	0	0.0010	2017	967	∞
	SAN	7.45	7.28	7.61	0.0001	0	0.0008	7180	1316	∞
	SAO	7.29	7.12	7.44	0.0002	0	0.0011	4540	897	∞
	SAS+SAP	7.42	7.26	7.56	0.0010	0.0002	0.0029	1037	343	863
	SAP+SAN	7.65	7.48	7.79	-	0	0	∞	∞	∞
	SAN+SAO	7.70	7.53	7.86	0.0012	0.0004	0.0035	809	282	2772
	SAS+SAP+SAN	7.76	7.59	7.92	0.00002	0	0.0001	42489	8240	∞
	SAP+SAN+SAO	7.83	7.65	8.01	0.0001	0	0.0004	13046	2676	∞
	SAS+SAP+SAN + SAO	7.90	7.72	8.10	0.0026	0.0012	0.0042	378	239	808
	floating	6.90	6.90	6.90	0.0009	0.0001	0.0019	1104	536	7723
Hayward/RC	HS	6.67	6.36	6.93	0.0034	0.0012	0.0069	292	144	830
	HN	6.49	6.18	6.78	0.0032	0.0011	0.0069	312	146	907
	HSthin	6.91	6.68	7.12	0.0024	0.0009	0.0047	413	211	1100
	c	6.98	6.81	7.14	0.0040	0.0023	0.0063	250	159	438
	HN+RC	7.11	6.94	7.28	0.0005	,	0.0013	2086	766	
	HS $+\mathrm{HN}+\mathrm{RC}$	7.26	7.09	7.42	0.0003	0.0001	0.0007	3524	1511	19158
	floating	6.90	6.90	6.90	0.0003	0.0001	0.0006	3524	1706	7294
Calaveras	cs	5.79	0.00	6.14	0.0075	0	0.0158	134	63	
	\propto	6.23	5.75	6.68	0.0054	0.0025	0.0097	184	103	397
	$\mathrm{CS+CC}$	6.36	5.87	6.75	0.0018	0	0.0065	541	155	
	an	6.78	6.58	6.97	0.0035	0.0015	0.0065	284	154	685
	CC+CN	6.90	6.68	7.11	0.0001	0	0.0011	10958	924	∞
	CS+CC+CN	6.93	6.72	7.14	0.0006	0	0.0018	1555	543	∞
	${ }^{\text {floating }}$	6.20	6.20	6.20	0.0030	0.0009	0.0077	331	130	1158
	filating CS+CC	6.20	6.20	6.20	0.0120	0.0025	0.0285	83	35	405

Probability of Surface -Fault Rupture

Wells and Coppersmith (1993):
M6.8 $=81 \%$ probability
M7. $0=87 \%$ probability
(Global dataset, 276 earthquakes)

For S. Hayward and N. Calaveras:

$$
P(D>0 \mid M)=1
$$

Displacement - Magnitude Relation

Variability in Displacement Along Rupture

1999 M 7.1 Hector Mine Earthquake

From Treiman et al. (2002) as provided by Wesnousky (2008)

Variability in Displacement Along Rupture

1999 M 7.1 Hector Mine Earthquake

From Treiman et al. (2002) as provided by Wesnousky (2008)

Variabilitity in Displacement Along Rupture

Along-strike COV (SFPUC, 2006)
Hemphill-Haley and Weldon (1999) = 14 events; COV ~ 0.85
Wesnousky (2008) = 20 strike-slip events; COV $=0.6 \pm 0.2$

Combined $\sigma \log (A D)=0.39$

Alternative: Variability in Displacement at a Point

1999 M 7.1 Hector Mine Earthquake

From Treiman et al. (2002) as
Slip-at-a point COV (Hecker and Abrahamson, 2004) ~ 0.35 provided by Wesnousky (2008)

Variability in Displacement Along Rupture

D/AD versus x/L (Youngs et al., 2003; Petersen et al., 2005)

From Youngs et al. (2003), normal faulting events

Variability in Displacement Along Rupture

D/AD versus x / L - Scale factor that averages to $D / A D=1$

Results - PFDHA, S. Hayward Fault

Results - PFDHA, S. Hayward Fault

475-year (10% in 50 yr)

- Mean = $2.9 \mathrm{ft}(0.9 \mathrm{~m})$
- ± 1 standard deviation $=$ 1.7 to 3.9 ft (0.5 to 1.2 m)

975-year (5\% in 50 yr)

- Mean $=4.8 \mathrm{ft}(1.5 \mathrm{~m})$
- ± 1 standard deviation = 3.2 to 6.1 ft (1.0 to 1.9 m)

deviatio

Results - PFDHA, N. Calaveras Fault

Results - PFDHA, N. Calaveras Fault

475-year (10% in 50 yr)

- Mean = $2.3 \mathrm{ft}(0.7 \mathrm{~m})$
$- \pm 1$ standard deviation $=$ 1.2 to 3.2 ft (0.4 to 1.0 m)

975-year (5\% in 50 yr)

- Mean $=3.9 \mathrm{ft}(1.2 \mathrm{~m})$
- ± 1 standard deviation = 2.6 to 5.0 ft (0.8 to 1.5 m)

deviatio

Results - PFDHA, San Andreas fault

475-year (10% in 50 yr)

- Mean = $14.1 \mathrm{ft}(4.3 \mathrm{~m})$
$\square \pm 1$ standard deviation $=$ 7.4 to 19.8 ft (2.3 to 6.0 m)

975-year (5\% in 50 yr)

- \quad Mean $=27.5 \mathrm{ft}(8.4 \mathrm{~m})$
- ± 1 standard deviation = 21 to 33.5 ft (6.4 to 10 m)
- Hecker and Abrahamson (2004) approach yields ~ 16.5 to 20.5 ft (5 to 6

deviatio

Discussion Points

- Variability/uncertainty in expected displacement from empirical approach is large, but less than for ground motions
- Values get ridiculous at upper end; need to truncate log -normal distribution?
- Uncertainty intended to guide engineering judgment and factor of safety
- These values are starting points for displacement characterization: distribution of slip, slip direction, creep, expected afterslip, secondary fault-rupture hazard...
- Slip-at-a point approach promising, but has limits.

WLA

