Response Spectrum Analysis of Bridges Crossing Faults

Konakli Katerina
Armen Der Kiureghian

University of California, Berkeley

May 20, 2009
Analysis of bridges crossing faults

Investigation of the problem with consideration of

- Ground motion spatial variability near the fault
- Characteristics of near-fault ground motions
 - Pulse-type nature
 - ‘Fling’ step
MSRS method

\[
E[\max |z(t)|] = \left[\sum_{k=1}^{m} \sum_{l=1}^{m} a_k a_l \rho_{u_k u_l} u_{k,\text{max}} u_{l,\text{max}} + 2 \sum_{k=1}^{m} \sum_{l=1}^{m} \sum_{j=1}^{N} a_k b_{lj} \rho_{u_k s_j} u_{k,\text{max}} D_i(\omega_j, \zeta_j) \right]^{1/2}
\]

\[
+ \sum_{k=1}^{m} \sum_{l=1}^{m} \sum_{i=1}^{N} \sum_{j=1}^{N} b_{ki} b_{lj} \rho_{s_i s_j} D_k(\omega_i, \zeta_i) D_l(\omega_j, \zeta_j)
\]

\(k, l\) indices for support motions \((m = \text{total number of support DOF})\)

\(i, j\) indices for modes \((N = \text{total number of modes})\)
\textbf{MSRS method}

\[
E\left[\max \left| z(t) \right| \right] = \left[\sum_{k=1}^{m} \sum_{l=1}^{m} a_k a_l \rho_{u_k u_l} u_{k,\max} u_{l,\max} + 2 \sum_{k=1}^{m} \sum_{l=1}^{m} \sum_{j=1}^{N} a_k b_{lj} \rho_{u_k s_j} u_{k,\max} D_j(\omega_j, \zeta_j) \right. \\
+ \left. \sum_{k=1}^{m} \sum_{l=1}^{m} \sum_{i=1}^{N} \sum_{j=1}^{N} b_{ki} b_{lj} \rho_{s_k s_j} D_k(\omega_i, \zeta_i) D_j(\omega_j, \zeta_j) \right]^{1/2}
\]

\(k, l\) indices for support motions \((m = \text{total number of support DOF})\)

\(i, j\) indices for modes \((N = \text{total number of modes})\)

\(a_k, b_{ki}\) effective response factors associated with support DOF \(k\) and mode \(i\)

– functions of structural mass and stiffness properties
MSRS method

\[
E\left[\max |z(t)| \right] = \left[\sum_{k=1}^{m} \sum_{l=1}^{m} a_k a_l \rho_{u_k u_l} u_{k, \text{max}}^{2} u_{l, \text{max}}^{2} + 2 \sum_{k=1}^{m} \sum_{l=1}^{m} \sum_{j=1}^{N} a_k b_j \rho_{u_k s_j} u_{k, \text{max}} D_l(\omega_j, \zeta_j) \right]^{1/2}
\]

- \(k, l\) indices for support motions \((m = \text{total number of support DOF})\)
- \(i, j\) indices for modes \((N = \text{total number of modes})\)
- \(a_k, b_{ki}\) effective response factors associated with support DOF \(k\) and mode \(i\) – functions of structural mass and stiffness properties
- \(u_{k, \text{max}}\) maximum ground displacement at support DOF \(k\)
- \(D_k(\omega_i, \zeta_i)\) ordinate of response spectrum at support DOF \(k\) for mode \(i\)
The three sets of correlation coefficients are functions of $u_{k,\text{max}}$, $D_k(\omega_i, \zeta_i)$, ω_i, ζ_i and a coherency function defining the spatial variability of the ground motion field.
Coherency function for the case of a strike-slip fault

Transverse support motions

\[\ddot{u}_1^y(t) = \ddot{u}_p \delta(t) \cos \phi \sin \delta \ t \]

\[\ddot{u}_2^y(t) = -\ddot{u}_n (t) \cos \phi \sin \delta \ t \]

Assuming FN and FP components are statistically independent:

\[\gamma_{12}^y(\omega) = \frac{-G_{\ddot{u}_p \ddot{u}_p}(\omega)(\cos \delta)^2 + G_{\ddot{u}_n \ddot{u}_n}(\omega)(\sin \delta)^2}{G_{\ddot{u}_p \ddot{u}_p}(\omega)(\cos \delta)^2 + G_{\ddot{u}_n \ddot{u}_n}(\omega)(\sin \delta)^2} \]

\(G_{\ddot{u}_p \ddot{u}_p}(\omega), G_{\ddot{u}_n \ddot{u}_n}(\omega) \) obtained in terms of corresponding response spectra
Input ground motions

Concerns

- Modification of response spectra to account for near-fault effects
- The narrow-band and distinctly non-stationary nature of near-fault ground motions violates fundamental assumptions of the MSRS method
- Lack of strong motion records at distances less than a hundred meters from the fault
 - use of simulated ground motions
 - use of ground motions recorded at larger distances
- Ground motions from the NGA database do not include the ‘fling step’ due to baseline correction
Evaluation of static offset

- If the fault ruptures to the surface
 \[x_o = \frac{D}{2} - \frac{D}{2} \tan^{-1}\left(\frac{d}{W}\right) \]

- otherwise
 \[x_o = \frac{D}{\pi} \left[\tan^{-1}\left(\frac{d}{W'}\right) - \tan^{-1}\left(\frac{d}{W}\right) \right] \]

- \(W \): Fault width
- \(W' \): Depth to the top of fault rupture
- \(d \): Distance from the fault
- \(D \): Average fault slip
‘Fling’ step time histories

- **Velocity**
 \[\dot{x}(t) = ct^\xi e^{-t/\alpha} \]
 - \(c \): normalizing parameter so that \(\int x(t) dt = x_0 \)
 - \(\alpha = T_R / 4, \ T_R \): Rise time
 - \(\xi \): controls the high-frequency decay rate, \(\xi = 1 \rightarrow \text{Brune source} \)

- **Displacement**
 \[x(t) = -c(at + a^2)e^{-t/\alpha} + ca^2 \]

- **Acceleration**
 \[\ddot{x}(t) = c \left(1 - \frac{t}{a} \right) e^{-t/\alpha} \]
Example applications

1979 Imperial Valley Earthquake
El Centro #7 Array record, FP component

1992 Erzikan Earthquake
Erzikan record, FP component
Thank you

Questions?