Response Spectrum Analysis of Bridges Crossing Faults

Konakli Katerina Armen Der Kiureghian

University of California, Berkeley

May 20, 2009

SFDC Workshop

Analysis of bridges crossing faults

Investigation of the problem with consideration of

- Ground motion spatial variability near the fault
- Characteristics of near-fault ground motions
 - Pulse-type nature
 - 'Fling' step

$$E\left[\max|z(t)|\right] = \left[\sum_{k=1}^{m}\sum_{l=1}^{m}a_{k}a_{l}\rho_{u_{k}u_{l}}u_{k,\max}u_{l,\max} + 2\sum_{k=1}^{m}\sum_{l=1}^{m}\sum_{j=1}^{N}a_{k}b_{lj}\rho_{u_{k}s_{lj}}u_{k,\max}D_{l}(\omega_{j},\zeta_{j}) + \sum_{k=1}^{m}\sum_{l=1}^{m}\sum_{i=1}^{m}\sum_{j=1}^{N}b_{ki}b_{lj}\rho_{s_{ki}s_{lj}}D_{k}(\omega_{i},\zeta_{i})D_{l}(\omega_{j},\zeta_{j})\right]^{1/2}$$

- *k*, *l* indices for support motions (m = total number of support DOF)
- *i*, *j* indices for modes (N = total number of modes)

$$E\left[\max|z(t)|\right] = \left[\sum_{k=1}^{m} \sum_{l=1}^{m} a_{k}a_{l}\rho_{u_{k}u_{l}}u_{k,\max}u_{l,\max} + 2\sum_{k=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{N} a_{k}b_{lj}\rho_{u_{k}s_{lj}}u_{k,\max}D_{l}(\omega_{j},\zeta_{j}) + \sum_{k=1}^{m} \sum_{l=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{N} \sum_{j=1}^{N} b_{ki}b_{lj}\rho_{s_{ki}s_{lj}}D_{k}(\omega_{i},\zeta_{i})D_{l}(\omega_{j},\zeta_{j})\right]^{1/2}$$

- *k*, *l* indices for support motions (m = total number of support DOF)
- *i*, *j* indices for modes (N =total number of modes)
- a_k, b_{ki} effective response factors associated with support DOF k and mode i – functions of structural mass and stiffness properties

$$E\left[\max|z(t)|\right] = \left[\sum_{k=1}^{m}\sum_{l=1}^{m}a_{k}a_{l}\rho_{u_{k}u_{l}}u_{k,\max}u_{l,\max} + 2\sum_{k=1}^{m}\sum_{l=1}^{m}\sum_{j=1}^{N}a_{k}b_{lj}\rho_{u_{k}s_{lj}}u_{k,\max}D_{l}(\omega_{j},\zeta_{j})\right]^{1/2}$$
$$+ \sum_{k=1}^{m}\sum_{l=1}^{m}\sum_{i=1}^{N}\sum_{j=1}^{N}b_{ki}b_{lj}\rho_{s_{ki}s_{lj}}D_{k}(\omega_{i},\zeta_{i})D_{l}(\omega_{j},\zeta_{j})\right]^{1/2}$$

k, *l* indices for support motions (m = total number of support DOF)

i, *j* indices for modes (N = total number of modes)

 a_k, b_{ki} effective response factors associated with support DOF k and mode i - functions of structural mass and stiffness properties

 $u_{k,\max}$ maximum ground displacement at support DOF k

 $D_k(\omega_i, \zeta_i)$ ordinate of response spectrum at support DOF k for mode i

$$\mathbb{E}\left[\max|z(t)|\right] = \left[\sum_{k=1}^{m}\sum_{l=1}^{m}a_{k}a_{l}\rho_{u_{k}u_{l}}u_{k,\max}u_{l,\max} + 2\sum_{k=1}^{m}\sum_{l=1}^{m}\sum_{j=1}^{N}a_{k}b_{lj}\rho_{u_{k}s_{lj}}u_{k,\max}D_{l}(\omega_{j},\zeta_{j}) + \sum_{k=1}^{m}\sum_{l=1}^{m}\sum_{i=1}^{m}\sum_{j=1}^{N}b_{ki}b_{lj}\rho_{s_{ki}s_{lj}}D_{k}(\omega_{i},\zeta_{i})D_{l}(\omega_{j},\zeta_{j})\right]^{1/2}$$

 $\rho_{u_k u_l}$ correlation coefficient between displacements at support DOFs k and l

- $\rho_{u_k s_{lj}}$ correlation coefficient between the displacement at support DOF *k* and the response of mode *j* to the ground motion at support DOF *l*
- $\rho_{s_{ki}s_{lj}}$ correlation coefficient between the response of mode *i* to the ground motion at support DOF *k* and the response of mode *j* to the ground motion at support DOF *l*

The three sets of correlation coefficients are functions of $u_{k,\max}$, $D_k(\omega_i, \zeta_i)$, ω_i , ζ_i and a **coherency function** defining the spatial variability of the ground motion field.

Coherency function for the case of a strike-slip fault

Transverse support motions

 $\ddot{u}_1^Y(t) = \ddot{u}_p \delta(t) \cos(\theta) \sin \theta \delta t$ $\ddot{u}_2^Y(t) = -i \delta_p(t) \cos(\theta) \sin \theta \delta i_n t$

Assuming FN and FP components are statistically independent:

$$\gamma_{12}^{Y}(\omega) = \frac{-G_{\vec{u}_{p}\vec{u}_{p}}(\omega)(\cos\delta)^{2} + G_{\vec{u}_{n}\vec{u}_{n}}(\omega)(\sin\delta)^{2}}{G_{\vec{u}_{p}\vec{u}_{p}}(\omega)(\cos\delta)^{2} + G_{\vec{u}_{n}\vec{u}_{n}}(\omega)(\sin\delta)^{2}}$$

 $G_{\ddot{u}_p\ddot{u}_p}(\omega), G_{\ddot{u}_n\ddot{u}_n}(\omega)$ obtained in terms of corresponding response spectra

Input ground motions

Concerns

- □ Modification of response spectra to account for near-fault effects
- The narrow-band and distinctly non-stationary nature of near-fault ground motions violates fundamental assumptions of the MSRS method
- Lack of strong motion records at distances less than a hundred meters from the fault
- use of simulated ground motions
- use of ground motions recorded at larger distances
- Ground motions from the NGA database do not include the 'fling step' due to baseline correction

Evaluation of static offset

□ If the fault ruptures to the surface

$$x_o = \frac{D}{2} - \frac{D}{2} \tan^{-1}(\frac{d}{W})$$

• otherwise

$$x_o = \frac{D}{\pi} \left[\tan^{-1}(\frac{d}{W'}) - \tan^{-1}(\frac{d}{W}) \right]$$

- *W* : Fault width
- *W*: Depth to the top of fault rupture
- *d* : Distance from the fault
- *D* : Average fault slip

'Fling' step time histories

- Velocity $\dot{x}(t) = ct^{\zeta} e^{-t/a}$
- *c* : normalizing parameter so that $\int x(t)dt = x_o$
- $a = T_R / 4$, T_R : Rise time
- ζ : controls the high-frequency decay rate, $\zeta = 1 \rightarrow$ Brune source

Displacement

 $x(t) = -c(at + a^{2})e^{-t/a} + ca^{2}$

□ Acceleration

$$\ddot{x}(t) = c \left(1 - \frac{t}{a}\right) e^{-t/a}$$

Example applications

Thank you

Questions?

