Probabilistic Fault Displacement Hazard Analyses

Application to the Hayward Fault

Rui Chen
Chris J. Wills
William A. Bryant
Tim Dawson
Mark D. Petersen

Main Objective

Develop a Probabilistic Fault Displacement Hazard Map

- The idea of a fault displacement hazard map (PEER Lifelines, etc.)
- PFDHA methodology and regressions (Mark Petersen et al.)
- Fault displacement data (Tim Dawson, including some of Steve Wesnousky's 2008 data)
- Fortran code for PFDHA calculation (Tianqing Cao and Mark Petersen, with modification)
- Detailed fault trace and fault branch activity (Bill Bryant)

- Putting pieces together and developing the map
- Calculating hazards at Highway 580 fault crossings

Methodology

- Mark Petersen et al. methodology (2004 2009). Regressions depend on:
- Accuracy of mapped fault trace
- Complexity of fault geometry
- Cell size (structure footprint size)
- Fault specific application using detailed fault

Fault trace

- A large number of cross-line profiles for map generation

Partition of Fault Displacement

Distance to Main Fault Trace (m)
Without partition
Displacement is partitioned among branches based on local geological evidence.

Application to the Hayward Fault

- Rupture of the Northern and Southern Hayward Fault segments
- A characteristic, M 7.0 earthquake occurring once every 140 years
- Modeled fault trace (in yellow) is defined by about 70 points selected in GIS based on:
- Alquist-Priolo traces
- Jim Lienkaemper traces

Fault Displacement Hazard Near Three 580 Crossings

Partition
(Main Trace , Branch)

(90\%, 10\%)

(95\%,5\%)
(100%, single trace)

Fault Displacement Hazard Map Near Hayward

10% in 50 years
$25 \times 25 \mathrm{~m}^{2}$ cell size
26 cross-line profiles

Partition of Displacement at Selected Locations

Main Trace Branch 1 Branch 2

1	75%	5%	20%
2	90%	10%	-
3	95%	5%	-
4	90%	10%	-
5	85%	10%	5%
6	95%	5%	-

Effect of Cell Size

$3^{\text {rd }}$ Highway 580 crossing 10% in 50 years

Wells and Coppersmith (1993):
$P[s r \neq 0 \mid M]=\frac{e^{(a+b M)}}{1+e^{(a+b M)}}$
Modification:

$$
\text { ratio }=\frac{\text { cell with rupture }}{\text { total number of cells }}
$$

Estimate of On-Fault Displacement

- Wells and Coppersmith (1994)

$$
\log _{10}\left(D_{\text {ave }}\right)=-6.32+0.9 M
$$

- Geological average or seismological average? What do they mean and how are they calculated?

$$
D\left(l, D_{\text {ave }}\right)=(D / A D) \times 10^{(-6.32+0.9 M)}
$$

2009 revision:
(normalized to geological AD)

2004 data and regression: (normalized to seismological AD?)

$$
D / A D=-2.4165 *(l / L)^{2}+1.9406 *(l / L)+0.0479
$$

On-Fault Slip Distribution

Wesnousky (2008): Asymmetric curves fit better than symmetric curves
Can we incorporate variation in the degree of asymmetry in PFDHA?

Probability Profiles

Multiple Probabilities

Summary

1. Lateral extent of estimated zone of fault displacement increases with increasing uncertainty in fault location and increasing complexity of mapped fault traces
2. Need continuous effort in augmenting fault displacement data and updating regression relations
3. PFDHA is consistent with PSHA and may be a valuable tool in design
