

CIVIL & ENVIRONMENTAL ENGINEERING

TSUNAMIGENIC PROBABILISTIC FAULT DISPLACEMENT HAZARD ANALYSIS FOR SUBDUCTION ZONES

Robb Eric S. Moss, Ph.D. P.E.

Research Objectives:

Develop a probabilistically methodology for tsunamigenic fault displacment hazard analysis to allow for performance-based tsunami engineering.

Workshop Talking Points:

o probabilistic methodology

o quantity and quality of data for statistical analysis of phenomena

o models and methods used to "fit" the data for predictive purposes

o observed or prescribed probability distributions (limits, trucation, etc)

o working definition of fault rupture/ground displacement

PSHA – Probabilistic Seismic Hazard Analysis (after Cornel, 1968 & 1971)

 $v(a) = N_{M\min} \int P(A > a | m, r) f_M(m) f_R(r) dm dr$

Annual rate of exceedence of ground shaking

Annual number of EQ's greater than Mmin

Conditional probability density function for ground shaking

Probability density function for magnitude

Probability density function for distance

PFDHA – Probabilistic Fault Displacement Hazard Analysis (after Youngs et al., 2003)

 $v(d) = N_{M\min} \int_{M} P(D > d|m) f_{M}(m) dm$

Annual rate of exceedence of surface displacement

Annual number of EQ's greater than Mmin

Conditional probability density function for surface displacement

Probability density function for magnitude

Magnitude Recurrence
$$v(d) = N_{M \min} \int_{M} P(D > d|m) \cdot f_{M}(m) dm$$

$$f(m) = \begin{cases} \frac{1}{1+c_2} \cdot \frac{\beta \cdot \exp\left(-\beta(\overline{M}_{char} - M_{\min} - 1.25)\right)}{1-\exp\left(-\beta(\overline{M}_{char} - M_{\min} - 0.25)\right)} & for \quad \overline{M}_{char} - 0.25 < M < \overline{M}_{char} + 0.25 \\ \frac{1}{1+c_2} \cdot \frac{\beta \cdot \exp\left(-\beta(M - M_{\min})\right)}{1-\exp\left(-\beta(\overline{M}_{char} - M_{\min} - 0.25)\right)} & for \quad M_{\min} \le M \le \overline{M}_{char} - 0.25 \end{cases}$$

Conditional probability density function for surface displacement

$$\nu(d) = N_{M\min} \int_{M} P(D > d|m) f_{M}(m) \cdot dm$$

 $P(D > d|m) = P(SR|m) \cdot P(D > d|m, SR)$

Conditional probability distribution of surface rupture given the occurrence of an earthquake Conditional probability distribution for a specific level of displacement given the occurrence of surface rupture Conditional probability distribution of surface rupture given the occurrence an earthquake P(SR|m)

Empirical Cumulative Probability Distribution of SR (Wells and Coppersmith, 1993)

type of regression --least squares

- -itast squares
- -orthogonal
- -Bayesian

SS-shallow shearing N-deep tensional R-deep compressional

Conditional probability distribution for a specific level of displacement given the occurrence of an earthquake with surface rupture P(D > d|m, SR)

 $log(D) = a + b \cdot M$ regression on log(D)

$$P(D > d|m, SR) = 1 - \Phi\left(\frac{\log(d) - \mu}{\sigma}\right)$$

Cumulative Lognormal Distribution

truncated lognormal? gamma distribution?

- Mw=5 - Mw=7 - Mw=9

Cascadia Example

Source Parameters:

- fault rupture area of roughly 1000 km by 50 km
- shear modulus of $3.5(10)^{11}$ dynes/cm²
- minimum and maximum magnitude of 5.0 and 9.0
- b-value of 0.8
- slip rate of 33 mm/yr (average between the N and S sections, Miller et al., 2001)

Research Objectives:

Develop a probabilistically methodology for tsunamigenic fault displacment hazard to allow for performance-based tsunami engineering. $\sqrt{}$

Workshop Talking Points:

 \circ probabilistic methodology $\sqrt{}$

o quantity and quality of data for statistical analysis of phenomena

o models and methods used to "fit" the data for predictive purposes

o observed or prescribed probability distributions (limits, trucation, etc)

o working definition of fault rupture/ground displacement

Thank you