Magnitude-Area Scaling of Strike-Slip Earthquakes

Paul Somerville, URS

Scaling Models of Large Strike-slip Earthquakes

L Model Scaling (Hanks & Bakun, 2002)

Displacement grows with L for L > > Wmax M ~ 4/3 log A (small L, large D)

W Model Scaling (Romanowicz, 1992)

Displacement constant for L >> Wmax M ~ 2/3 log A (large L, small D)

Self Similar Area Scaling (Somerville, 2006)

Displacement proportional to area M ~ log A *(intermediate between L & W)*

Hanks and Bakun (2002)

Somerville, 2006

Comparison of Moment – Area Scaling Relations

Rupture Area vs Seismic Moment for Crustal Strike-Slip Earthquakes

Data Types for Area Estimation

- Indirect measurements (aftershock zone; surface rupture length): Wells & Coppersmith (1994); Hanks & Bakun (2002); WGCEP(2002)
- Direct measurements from rupture models derived from seismic radiation: Somerville et al. (1999); Mai & Beroza (2000), Somerville (2006)

Comparison of Data used by WCGEP (2002) and Somerville (2006): 1999 Izmit Earthquake

AUTHOR	AR	EA	METHOD	
	Untrimmed	Trimmed		
Delouis et al. (2002)	2550		Slip model inversion	
Wright et al. (2001)	1700		INSAR	
Yagi & Kikuchi (2000)	1050		Preliminary automated slip model inversion	
AVERAGE - WGCEP	1767			
Bouchon et al. (2002)	2790	2790	Slip model inversion	
Delouis et al. (2002)	3882	2700	Slip model inversion	
Sekiguchi & Iwata (2002)	3285	2796	Slip model inversion	
Thio et al (2004)	3040	2800	Slip model inversion	
AVERAGE – Somerville	3249	2772		

Synoptic model of a shear zone (Scholz, 1988)

Slip model is derived by matching recorded and calculated seismograms, GPS, surface slip,....

Depth Distribution of Slip

Slip (cm)

A. Conceptual model of frictional characteristics at depth, B. Expected coseismic slip distribution with depth (King and Wesnousky)

L model – strain drop increasing with magnitude (box) SA model – constant strain drop (taper)

Implications for Earthquake Forecast Models

- The main impact is on Mmax, which affects recurrence of smaller earthquakes
- UCERF found that SA models overpredict historical seismicity due to low Mmax (the "bulge"), and excluded them from consideration
- But many other factors could be responsible for causing the "bulge"

Factors that Influence Seismicity Rate

Field et al (1999): explaining deficit in S Cal Seismicity:

- The b-value and minimum magnitude applied to Gutenberg-Richter seismicity
- The percentage of moment released in characteristic earthquakes
- A round-off error in the moment magnitude definition
- Bias due to historical catalog completeness
- Careful adherence to the conservation of seismic moment rate
- Uncertainty in magnitude estimates obtained from empirical regressions
- Allowing multi-segment ruptures (cascades)
- The time dependence of recurrence rates.

Implications for Strong Motion Simulation

- SA models are compatible with recorded long period strong ground motion amplitudes, which tend to saturate with increasing magnitude
- L models are not predict ground motions that increase rapidly with increasing magnitude, and are much too large

Magnitude scaling of response spectral acceleration (g) for peak acceleration (left) and 3 seconds period (right) for various distances, for the Chiou and Youngs (2008, solid lines) and Sadigh et al. (1997, dashed lines) ground motion models.

Comparison of Simulations with NGA Predictions using Somerville SA Mw-Area Relation

Summary

- The Hanks & Bakun and Ellsworth Mw-Area relations used in UCERF fault models underestimate fault area and may be incompatible with a gradual transition from brittle to ductile behavior at the base of the seismogenic zone
- These Mw-Area relations cause overprediction
 of recorded strong ground motions
- The SA Mw-Area model is compatible with both the gradual transition and with recorded motions

Table 4. Crustal Strike-slip Earthquakes used by Somerville (2006a)

Earthquake	Mw	Seismic Moment	Rupture Area	Sources		
Denali	7.9	8.00E+27	7846	Asano et al. (2005), Ji (2005), Oglesby et al. (2004), Ozacar & Beck (2004), Thio (2005)		
Kunlunshan	7.8	5.30E+27	8633	Antolik et al. (2004), Bouchon & Vallee (2004), Ozacar & Beck (2004), Velasco (2004)		
San Francisco	7.8 (7.87)	5.00E+27 (7.00E+27)	5280 (5760)	Wald et al. (1996) Song and Beroza (2006)		
Izmit	7.5	2.25E+27	2772	Bouchon et al. (2002), Delouis et al. (2002), Sekiguchi et al. (2002), Thio and Graves (2004)		
Landers	7.2	7.50E+26	1072	Cotton & Campillo (1995), Hernandez et al (1999), Wald & Heaton (1994), Zeng & Anderson (1999)		
Hector Mine		6.20E+26	1014	Ji et al. (2002), Kaverina et al. (2002), Salichon et al (2003)		
Duzce	7.1	5.60E+26	1152	Thio et al. (2004)		
Loma Prieta	7.0	3.00E+26	581	Beroza (1991), Steidl et al. (1991), Wald et al. (1991), Zeng & Anderson (2000)		
Kobe	6.9	2.40E+26	1080	lde & Takeo (1996), Sekiguchi et al. (1997), Wald (1996), Yoshida et al., Zeng & Anderson (2002).		
Tottori	6.8	1.90E+26	598	Sekiguchi et al. (2003).		
Yamaguchi	6.5	5.80E+25	196	Miyakoshi et al. (2000)		
Imperial Valley	6.5	5.00E+25	360	Hartzell and Heaton (1983)		
Superstition Hills	6.3	3.50E+25	161	Wald et al. (1990)		
Morgan Hill	6.2	2.10E+25	312	Beroza & Spudich (1988), Hartzell & Heaton (1986)		
Kagoshima	6.0	1.00E+25	144	Miyakoshi et al. (2000)		
Coyote Lake	5.7	3.50E+24	39	Liu &Helmberger (1983)		

Table 5. Fault Dimensions of Crustal Strike-slip Earthquakes used by Somerville (2006a)

Earthquake	Before Trimming		After Trimming			Reference	
	Length	Width	Area	Length	Width	Area	
2002 Denali	261.00	18.00	4698.00	261.00	18.00	4698.00	Asan et al (2005)
	300.00	30.00	9000.00	288.75	30.00	8662.50	Oglesby et al (2004)
	290.00	20.00	5800.00	280.00	20.00	5600.00	Ji (2003)
	408.00	32.00	13056.00	386.00	32.00	12352.00	Oglesby et al (2004)
	376.00	30.00	11280.00	264.00	30.00	7920.00	Thio pers comm (2005)
2001 Kunlunshan	460.00	30.00	13800.00	460.00	30.00	13800.00	Antolik et al (2004)
1999 Izmit	155.00	18.00	2790.00	155.00	18.00	2790.00	Bouchon et al (2002)
	172.50	22.50	3881.25	150.00	18.00	2700.00	Delouis et al (2002)
	141.00	23.30	3285.30	120.00	23.30	2796.00	Sekiguchi and Iwata (2002)
	152.00	20.00	3040.00	140.00	20.00	2800.00	Thio pers comm (2005)
1992 Landers	80.00	15.00	1200.00	80.00	15.00	1200.00	Cotton and Campillo (1995)
	80.00	15.00	1200.00	70.00	15.00	1050.00	Hernandez et al (1999)
	78.00	15.00	1170.00	69.00	15.00	1035.00	Wald and Heaton (1994)
	77.00	15.00	1155.00	71.50	14.00	1001.00	Zeng and Anderson (1999)
1999 Hector Mine	54.00	16.00	864.00	45.00	13.30	598.50	Ji et al (2002)
	68.00	24.00	1632.00	68.00	24.00	1632.00	Kaverina et al (2002)
	54.00	18.00	972.00	45.00	18.00	810.00	Salichon et al (2003)
1989 Loma Prieta	40.00	14.00	560.00	38.00	14.00	532.00	Beroza 1991
	38.00	17.00	646.00	38.00	14.87	565.06	Steidle et al (1991)
	40.00	20.00	800.00	40.00	17.50	700.00	Wald et al (1991)
	40.00	14.00	560.00	37.50	14.00	525.00	Zeng and Anderson (1999)
2000 Tottori	34.00	17.60	598.40	34.00	17.60	598.40	Sekiguchi et al (2003)