

CHARACTERISTICS OF GEOLOGIC DATA SET

Coefficient of Variation (C.V.)

$$C.V. = \frac{\sigma_i}{\overline{D_i}} = \alpha$$

$$C.V. = \sqrt{\frac{\sum_{i=1}^{N_{site}} \sum_{j=1}^{N_i} \left(\frac{D_{ij} - \overline{D}_i}{\overline{D}_i}\right)^2}{(N_{displ} - N_{site})}}$$

Effect of Small Number of Events per Site

- Use Monte Carlo
 - Population C.V.=0.4
 - Same sampling as in data set
- Result:
 - Average C.V.=0.41 (small bias toward larger CV)

COMPUTED COEFFICIENT OF VARIATION FOR SLIP AT A POINT

Event Position of Smallest Slip

- Smallest slip is more often the most recent event
- Accommodate effect by varying the probability of detection by event position
- Calibrate using observed frequencies

Threshold of Event Detection

Model based on General Field Conditions

Probability of Detection Model

Example: 50% at 0.5m for next to last event This leads to observed rates of position of smallest slip

Detection

Example: mean slip is 2.5 times detection threshold

Detection

Example: mean slip is close to detection

Modeling Variability in Slip at a Point

- Forward Modeling of expected observations of slip at a point
 - Prob (M) (from mag recurrence model)
 - Prob (rupture to surface given M)
 - Prob (rupture past site given Rup Length(M))
 - Prob (amount of surface slip given M)
 - Prob (detection) including effect of adding slip from non-detected events to the detected events
- Magnitude recurrence models
 - Truncated exponential
 - Youngs & Coppersmith Characteristic
 - Max Mag = 7.5, MinMag = 6.0

Probability of Surface Rupture (modified from IGNS, 2003)

Modeling Variability in Slip at a Point

- Forward Modeling of expected observations of slip at a point
 - Prob (M) (from mag recurrence model)
 - Prob (rupture to surface given M)
 - Prob (rupture past site given Rup Length(M))
 - Prob (amount of surface slip given M)
 - Prob (detection) including effect of adding slip from non-detected events to the detected events
- Magnitude recurrence models
 - Truncated exponential
 - Youngs & Coppersmith Characteristic
 - Max Mag = 7.5, MinMag = 6.0

Amount of Surface Slip

- Average Displacement
 - Use Wells and Coppersmith for all fault types
 - $-\log(AD) = -4.8 + 0.69M \pm 0.36$ (±0.82 In units)
- Variation in Displacement along Strike
 - Use results from (Hemphill-Haley and Weldon, 1999)
 - Sigma along strike approx 0.7 natural log units
- Total standard deviation of slip-at-a-point
 - $Sqrt(0.82^2+0.70^2)= 1.07$

Modeling Variability in Slip at a Point

- Forward Modeling of expected observations of slip at a point
 - Prob (M) (from mag recurrence model)
 - Prob (rupture to surface given M)
 - Prob (rupture past site given Rup Length(M))
 - Prob (amount of surface slip given M)
 - Prob (detection) including effect of adding slip from non-detected events to the detected events
- Magnitude recurrence models
 - Truncated exponential
 - Youngs & Coppersmith Characteristic
 - Max Mag = 7.5, MinMag = 6.0

C. V. from Modeling Results

Case 1: Using full Slip Variability for given M

Slip with 50% chance	Truncated	Y&C	
of detection in next to	Exponentia	Characteristi	
last event	I	С	
	C.V.	C.V.	
0.1 m	1.55	1.33	
0.25 m	1.39	1.26	
0.5 m	1.17	1.14	
1.0 m	0.94	0.98	
2.0 m	0.86	0.87	

C. V. from Modeling Results

Case 2: Using reduced Variability for given M (reduced to 0.3 natural log units)

Slip with 50% chance	Truncated	Y&C	
of detection in next to	Exponentia	Characteristi	
last event	I	С	
	C.V.	C.V.	
0.1 m	0.71	0.44	
0.25 m	0.64	0.42	
0.5 m	0.68	0.48	
1.0 m	1.06	0.78	
2.0 m	1.13	0.98	

Conclusions from Forward Modeling

- Variability of slip at a point must be much smaller than expected using global models.
- The Y&C characteristic magnitude-frequency model gives C.V. values similar to observed values if small variability in slip for a given magnitude is used.
- The truncated exponential magnitudefrequency model gives C.V. values much larger than observed even with reduced variability in slip for a given magnitude.