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ABSTRACT 
 

The deleterious effect of control errors in the obtained response for shaking-table, pseudo-
dynamic and hybrid tests can be quantified in a standard way by assessing the frequency and 
damping distortion in the obtained response as identified from equivalent linear models. The 
identified linear models are based only on the measurements done during the experiment, which 
increases the generality and applicability of the proposed strategy. 

 
INTRODUCTION 

 
Dynamic simulation experiments on structures are normally based on the use of hydraulic 
actuators that can apply large loads, displacements and velocities. However, this actuation 
system is subject to systematic control errors that can significantly modify the obtained response 
producing alterations in the apparent frequencies and damping. These effects, which are not 
predictable just by looking at the magnitude of the control errors, have been observed for 
pseudo-dynamic (PsD) and hybrid tests (Shing and Mahin 1987, Thewalt and Roman 1994, 
Molina et al. 2002, Mosqueda et al. 2007) as well as for shaking-table (ST) tests (Molina et al. 
2008) and different specific strategies have been proposed for their assessment. The possibility 
of developing common reliability assessment criteria for all those different kinds of test would 
offer tools for increasing the credibility of test results by means of standard quality control 
parameters. A first step in that direction has been done regarding PsD and ST tests (Molina et al. 
2009) and based on the comparison of the obtained experimental eigenfrequencies and damping 
ratios with the ones of the ideal prototype structure. Those frequencies and damping ratios are 
estimated by means of linear models that approximate both the experimental system and the 
prototype one and are always identified exclusively from the results of the test in question, 
assuming that all the excitations really acting on the specimen during the test are properly 
measured. In this paper, such assessment strategy is extended to PsD tests with substructuring 
and to real-time hybrid tests. 

Within that general approach, it is considered that the testing set-up models a prototype structure 
under certain conditions, ideally represented by the equation 

{ }( ) ( )o t F i t=  
(1)

where ( )i t  is the specified input (excitation) as a function of time t , ( )o t  is the corresponding 
output (response) and {}F  is ideally the functional operator of the prototype system that 
produces the output function when applied to the input function. The performed response during 
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the test ( )perfo t  will be different to the ideal prototype one, so that, for the experimental model, 
expression (1) is transformed into 

{ }( ) ( )perf exp perfo t F i t=  (2)

where the operator of the prototype system has been substituted by the one of the experimental 
system. Even though the test can be performed in a different scale regarding the time or other 
magnitudes, the variables in expressions (1) and (2) are all referred to the original prototype 
scale. Then, the reliability of the test will be assessed by the fidelity in the reproduction of the 
ideal response by the performed response or, preferably, by the fidelity in the reproduction of the 
ideal operator of the prototype system by the experimental system operator 

When a test is executed, the performed input and output in (2) are part of the test results, but 
normally the entities appearing in expression (1) are not known and the reliability of the test is 
not assessed. In the following sections, we will propose methods for assessing the test reliability 
based on the estimation and comparison of the functional operators for the prototype and for the 
experimental systems by using linear-equivalent models identified from the measurements. Then, 
the reliability of the test will be assessed by comparing some characteristic values, such as 
eigenfrequencies and damping ratios, for both systems. It is worth to mention that a similar 
technique is done for example when analysing the accuracy of discrete-time integration methods 
for the equation of motion as compared to the continuous ideal solution. As it is done also there, 
those characteristic values are obtained for linear systems that are expected to suffer the same 
kind of error consequences as the real non-linear structures (Hilber et al., 1977). As a difference 
with respect to that case, the current assessment is proposed here to be applied to every executed 
simulation and not to the method itself. 

 
PSEUDO-DYNAMIC TEST 

 
The object of a PsD test is solving a seismic problem for a N-DoF structure, for which the input 
is the specified accelerogram ( )tga  and the output is the relative displacements ( )td . The 
functional operator in (1) is defined as the one that solves the equation of motion, which for the 
purpose of the proposed assessment is approximated by a linear one and expressed in the Laplace 
domain as 

2 2( ) ( ) ( ) ( ) ( ) ( )s s s s s s s s s+ = + + = − gM D R M D C D KD MJA  
(3)

where M  is the mass matrix that multiplies the relative accelerations, ( )sR  are the restoring 
forces that depend non-linearly on the history of displacements and velocities and J  is the matrix 
of influence for the ground acceleration components on the DoFs. 

Expression (3) can also be rewritten as 
12( ) ( ) ( )s s s s

−
⎡ ⎤ ⎡ ⎤= − −⎣ ⎦⎣ ⎦ gD M MJA R  

(4)

Corresponding to the diagram of Fig. 1 
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Fig. 1. Prototype system for a linear seismic problem. 

Working with linear systems in the Laplace domain, the application of the operator to give the 
solution of the equation consists of a multiplication of the excitation by the transfer function 
between the input and the output 

( ) ( ) ( )s s s= gD F A  
(5)

which substitutes (1). The poles of this transfer function can be obtained by solving the 
eigenvalue problem (Ewins, 1984) 

s ⎡ ⎤ ⎡ ⎤+ =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

C M K 0
φ φ 0

M 0 0 M  

(6)

which complex conjugate eigenvalue couples can then be expressed in the form 

* 2, ( 1 )i i i i is s jω ζ ζ= − ± −  
(7)

where iω  is the natural frequency and iζ  the damping ratio of the ith mode. 

In this section we will consider the case of a PsD test on a global specimen (that contains all the 
elements of the system) and we will try to analyse the discrepancies in the response introduced 
exclusively by the control errors. Thus, we will not consider here other aberrations such as the 
ones introduced by the application of a discrete number of DoFs (mass concentration) or by 
neglecting the strain-rate effect. Also the alterations in the response introduced by the discrete-
time integration method will not be considered. In fact, the latter alterations are completely 
negligible when using the continuous PsD technique that uses extremely small integration time 
steps (Pegon et al. 2008). 

Within such assumptions, the linear-equivalent system of the prototype structure can be 
represented as in the diagram of Fig. 1, while the one of the PsD experiment can be represented 
as in Fig. 2. In both diagrams, the time and the Laplace variable are in the scale of the prototype 
in order to facilitate the comparison, independently of the fact that the PsD test is done slower 
than the reality. 

−
+  12s

−
⎡ ⎤⎣ ⎦M  

s +C K  

( )sD  ( )g sA  

( )sR  

−MJ  



 4

 

 
Fig. 2. Linear-equivalent experimental system for a PsD test. 

According to the definition (2), the solution of the PsD equation of motion will be called 
performed displacement 

( ) ( ) ( )perf exps s s= gD F A  
(8)

in order to distinguish it from the one of the prototype system (5). However, the physic 
displacements that are measured during the test are 

( ) ( ) ( )meas perfs s s=D H D  (9)

where ( )sH  is the transfer function of the control system that imposes the displacements to the 
specimen normally by hydraulic actuators. This transfer function depends on the controller type 
and parameters, on the actuators, on the specimen and also on the testing speed (Molina et al. 
2002). Because the physic displacement of the specimen are different from the solved ones, the 
physic restoring forces which are measured and introduced in the PsD equation obey to the 
relationship 

[ ]( ) ( ) ( ) ( ) ( ) ( )perf meas meas perfs s s s s s s s= + = +R C D KD CH KH D  
(10)

However, in order to simplify this formulation, we will substitute expression (10) by the 
approximation 

( ) ( )perf perf perf perfs s s⎡ ⎤= +⎣ ⎦R C K D  
(11)

And then, approximately, the diagram in Fig. 2 will be substituted by the one in Fig. 3, 
corresponding to the equation 

2 2( ) ( ) ( ) ( )perf perf perf perf perfs s s s s s s⎡ ⎤+ = + + = −⎣ ⎦ gM D R M C K D MJA  
(12)

 
Fig. 3. Approximation of the experimental system based on the performed damping and 

stiffness matrices. 

−
+  12s

−
⎡ ⎤⎣ ⎦M  

perf perfs +C K  

( )perf sD  ( )g sA  

( )perf sR  

−MJ  

( )meas sD  

−
+  12s

−
⎡ ⎤⎣ ⎦M  

( )sH  

( )perf sD  ( )g sA  

( )perf sR  

−MJ  

s +C K  
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The assessment of the test reliability will be done by comparing the characteristics of the 
experimental transfer function with the ones of the prototype transfer function. To do so, the 
method that we propose consists of making estimations of the matrices entering in these 
formulae by using the results of the performed test without introducing any analytical model for 
the structure or for the control system. In fact, just using the variables that are available during 
the test (Fig. 2), we can establish the relationship 

[ ]( ) ( )perf meass s s= +R C K D  
(13)

That we use in the time domain as 

( ) ( ) ( )
meas

perf meast d t d t
•

= +r C K  
(14)

In order to identify the damping and stiffness matrices of the prototype C  and K  by means of 
the spatial model method (Molina et al. 1999). The eigenvalue problem (6) is applied to such 
identified matrices in order to solve the frequencies and damping ratios of the prototype (7). 
Then, by using always only variables accessible during the test, from the established relationship 
(11), working again with the time domain spatial model identification, the performed damping 
and stiffness matrices of the experimental model perfC  and perfK  are identified from 

( ) ( ) ( )
perf

perf perf perf perft d t d t
•

= +r C K  
(15)

and with them the eigenvalue problem 

perf perf

s
⎡ ⎤ ⎡ ⎤

+ =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

C M K 0
φ φ 0

M 0 0 M  

(16)

is formulated, and its solution 

* 2, ( 1 )exp exp exp exp exp
i i i i is s jω ζ ζ= − ± −  

(17)

gives the experimental frequency and damping values. Finally, the reliability of the experiment is 
assessed by comparing these experimental values (17) with the ones estimated for the prototype 
(15). This assessment has been regularly applied to the PsD tests performed in the ELSA 
laboratory for several years (Molina and Geradin 2007). 

 
PSEUDO-DYNAMIC TEST WITH SUBSTRUCTURING 

 
When the PsD test is performed for a system of substructures, if we consider only the errors 
introduced by the control system as in the previous section, for the linear-equivalent modelling, 
equation (3) and Fig. 1 can still describe the global prototype system. In the same way, Fig. 2 can 
describe the global experimental system that will be approximated by (12) and Fig. 3. 

In order to fix ideas, we will assume that the prototype system is made of a first substructure 
called A  and a second substructure called B . Thus, from the solved global vector of 
displacement ( )sD , the respective displacements of the substructures ( )A sD  and ( )B sD  are 
derived by compatibility. Then, for the first substructure, we have that the respective restoring 
force is given by 
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( ) [ ] ( )A A A As s s= +R C K D  (18)

And for the second substructure 

( ) [ ] ( )B B B Bs s s= +R C K D  (19)

The global vector of restoring forces ( )sR  is then assembled from ( )A sR  and ( )B sR  by 
equilibrium. Also the global matrices of damping and stiffness can be assembled from the ones 
of the substructures by compatibility and equilibrium and we will symbolically represent this by 

A B= ⊕C C C  ; A B= ⊕K K K  (20)

We will assume that in the PsD test the first substructure A  is experimental, while the second 
one B  is numerical. Thus, similarly to the previous section (Fig. 2), the displacements solved for 
the experimental substructure will be applied to it through the control system that will introduce 
a distortion producing the measured displacements 

( ) ( ) ( )meas perf
A A As s s=D H D  (21)

and then, similarly to (10) 

[ ]( ) ( ) ( ) ( ) ( ) ( )perf meas meas perf
A A A A A A A A A As s s s s s s s= + = +R C D K D C H K H D  

(22)

This means that the submatrices of damping and stiffness relative to the experimental 
substructure can be identified from the time domain expression containing the results of the test 

( ) ( ) ( )
meas

perf meas
AA A A At d t d t

•
= +r C K  

(23)

Because in the numerical substructure there are no control errors, we do not need to distinguish 
between performed and measured displacements and so 

( ) ( ) ( )perf perf perf
B B B B Bs s s s= +R C D K D  

(24)

Then, if the numerical substructure is linear, its relative matrices of damping and stiffness are 
already known. Otherwise, they can be identified analogously from the time domain expression 
containing the test results as 

( ) ( ) ( )
perf

perf perf
BB B B Bt d t d t

•
= +r C K  

(25)

Using the identified matrices from (23) and (25), the global matrices are assembled according to 
(20). Then, by formulating the eigenvalue problem (6), the natural frequencies of the prototype 
system (7) are solved 

On the other hand, regarding the experimental system, according to Fig. 3 and similarly to (11), 
we will approximate (22) by 

( ) ( )perf perf perf perf
A A A As s s⎡ ⎤= +⎣ ⎦R C K D

 
(26)

so that the performed matrices for the experimental substructure will be identified in the time 
domain using the relationship 
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( ) ( ) ( )
perf

perf perf perf perf
AA A A At d t d t

•
= +r C K  

(27)

Then, the already identified matrices for the numerical substructure from (25) can be considered 
to be the performed ones since no experimental errors distort the behaviour of this part of the 
structure. That is to say, 

;perf perf
B B B B= =C C K K  (28)

and it is possible now to assemble, like in (20), the global performed matrices of the test 

A B

perf perf perf= ⊕C C C  ; A B

perf perf perf= ⊕K K K  
(29)

That allows formulating the eigenvalue problem (16), which solution are the natural frequencies 
and damping ratios of the experimental system (17). Then, by comparison of these values (17) 
with the ones of the prototype system (7), the reliability of the performed test is assessed. 

 
REAL-TIME HYBRID TEST 

 
When the test is performed at real-time speed, the term PsD is not used anymore and it is simply 
called real-time hybrid test. Even though for this kind of test, the numerical errors introduced by 
the integration algorithm can be significant and represent a major issue depending on the type of 
algorithm (Shing 2008). We will consider that those errors are assessed separately by other 
techniques and shown to be negligible, so that our error assessment will continue to be limited to 
the control errors effects. 

As in the previous subsection, we will consider that, for the linear equivalent modelling, equation 
(3) and Fig. 1 describe the global prototype system. However, with respect to the previous 
sections, we will introduce two novelties that may be relevant for real-time tests. Firstly, testing 
at real time, the physical mass of the specimen phyM  produces inertial forces that modify the 
measurement of the restoring forces, so that, instead of (10), 

2( ) ( ) ( ) ( )meas phy meas meas meass s s s s s= + +R M D C D KD  
(30)

And this is also the reason for which, in the hybrid equation of motion 
2 ( ) ( ) ( )an perf meass s s s+ = − gM D R MJA  

(31)

a reduced analytical mass anM  is used instead of the total presumed mass M . Ideally, the 
analytical mass should be 

an phy= −M M M  (32)

however the exact value of phyM  is not known. 

 

Secondly, because the effects of the control errors in real-time tests can be very severe, typically, 
the target sent to the controller is not the solved displacement ( )perf sD  from the equation of 
motion (31), but a modification of it obtained by applying a compensation numerical filter 
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( )comp sH  that should, at least partially, neutralise the distortion that will be introduced afterwards 
by the control (e.g. Hiuruchi et al. 1999). Thus, the target displacement is computed as 

( ) ( ) ( )targ comp perfs s s=D H D  (33)

And then, because of the control errors, the obtained measured displacement is 

( ) ( ) ( )meas targs s s=D H D  (34)

where ( )sH  is the transfer function of the control system. 

Thus, the flux diagram for this type of text, after equations (30) to (34), can be the one shown in 
Fig. 4. 

 
Fig. 4. Linear-equivalent experimental system for a real-time hybrid test. 

The measured restoring forces, by combining (30), (33) and (34), can be expressed as 

2( ) ( ) ( ) ( )meas phy comp perfs s s s s s⎡ ⎤= + +⎣ ⎦R M C K H H D
 

(35)

However, as in the previous sections, we will introduce an approximation of the type 

2( ) ( )meas meas perf perf perfs s s s⎡ ⎤= + +⎣ ⎦R M C K D
 

(36)

so that, equation (31) becomes 

( ) 2 ( ) ( )an meas perf perf perfs s s s⎡ ⎤+ + + = −⎣ ⎦ gM M C K D MJA
 

(37)

that can be represented by the diagram in Fig. 5, where we define 
perf an meas= +M M M  (38)

and 

( )meas sD  

−
+  12ans

−
⎡ ⎤⎣ ⎦M  

( )sH  

( )perf sD  ( )g sA  

( )meas sR  

−MJ  

2phys s+ +M C K  
( )targ sD  

( )comp sH  
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( ) ( )perf perf perf perfs s s⎡ ⎤= +⎣ ⎦R C K D  
(39)

 
Fig. 5. Approximation of the experimental system based on the performed matrices of 

mass, damping and stiffness. 
As in the previous section, we will consider that the structure is divided into two substructures of 
which A  is the experimental one and B  is the analytical one. Then, the required matrices for the 
linear approximation of the prototype and of the experimental systems will be estimated 
separately for each substructure also here. Thus, from the time domain version of (30) for the 
experimental substructure, 

( ) ( ) ( ) ( )
meas meas

meas phy meas
A AA A A A At d t d t d t

•• •
= + +r M C K  

(40)

The associated ideal matrices phy
AM , AC  and AK  can be estimated, whereas, for the analytical 

substructure, the physical mass is null and the damping and stiffness matrices, if necessary, can 
be estimated from 

( ) ( ) ( )
perf

perf perf
BB B B Bt d t d t

•
= +r C K  

(41)

Since for this substructure there is no difference between performed, target and measured 
displacements. The global matrices are then obtained by assembling (20) and 

phy phy phy
A B= ⊕M M M  

(42) 

where 
phy
B =M 0  

(43)

Note that this estimated value of the physical mass (42) may eventually be used for updating the 
adopted value of the analytical mass as (32) for successive executions of the test with the same 
specimen. With the assembled matrices of damping and stiffness, plus the theoretical mass 
matrix, the prototype eigenvalue problem (6) can be formulated and solved as (7). 

Now, regarding the experimental system, the time domain version of equation (36) 

( ) ( ) ( ) ( )
A A

perf perf
meas meas perf perf perf

A AA A At d t d t d t
•• •

= + +r M C K  
(44)

Allows to estimate the involved matrices for the specimen substructure, whereas for the 
numerical substructure, we have (28) and 

−
+  12perf s

−
⎡ ⎤⎣ ⎦M  

perf perfs +C K  

( )perf sD  ( )g sA  

( )perf sR  

−MJ  
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meas
B =M 0  

(45)

Thus, the global matrices are assembled following (29) and 
meas meas meas

A B= ⊕M M M  
(46)

And the global performed mass is given by (38). This allows formulating the eigenvalue problem 
associated to the experimental system of Fig. 5 as 

perf perf perf

perf perfs
⎡ ⎤ ⎡ ⎤

+ =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

C M K 0
φ φ 0

M 0 0 M  

(47)

Again, the reliability of the performed experiment is assessed by comparing these experimental 
eigenfrequencies and damping ratios with the estimated ones for the prototype system. 

 
CONCLUSIONS 

 
This paper is a contribution to the definition of a general approach for the assessment of 
reliability in PsD, dynamic and hybrid tests regarding the disturbances of the ideal response of 
the specimens due to the presence of control errors. The assessment is done through the 
comparison of the experimental response eigenfrequencies and damping ratios with the ones of 
the prototype structure. All the required parameters are estimated using exclusively experimental 
information from the test. The systematic application of this type of assessment to structural 
experiments would increase the reliability of their results. 
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