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ABSTRACT 
 

In this work the modal stability for a bridge-cable considering the relation between the second in 
plane and the first out-of-plane modal frequencies as 2ω1= ω2 will be developed.  The analysis 
has been carried out on a cable 5.4 m long. We consider a simplified one degree of freedom 
cable-stay bridge model, representing a bridge deck movement, which interacts with a particular 
cable in the structure. The first out-of-plane and the second in-plane mode are known to have 
modal cross-coupling. Analytical stability boundaries can be derived to identify the point at 
which modal coupling destabilizes the out-of-plane mode. The experimental results have been 
analyzed using a model of the cable in the Earthquake Engineering Laboratory at the University 
of Bristol. In particular the cable has been tested using real–time dynamic substructuring which 
is a form of hybrid testing. Analytical and experimental results were compared and a good 
correlation was obtained. 
 

INTRODUCTION 
 

Cable-stay bridges are very common in the world especially because they are a wonderful 
expression of the antique and modern architecture and very useful too. These bridges have three 
fundamental structural elements: pylons, deck and cables and their interaction is very complex 
especially because the large number of the cables connected with the deck. Also the non-linearity 
of the cable behaviour and the vibrations transferred from the deck to the cables create a 
complicated system. Is very difficult to reproduce the bridge behaviour in the Laboratory 
considering all the cable so firstly we decide to take in account just one cable moved by deck’s 
vibrations. Due to interactions between the deck and cable the dynamics are complex so we 
simulate them  using a new technique called Real-Time Dynamic Substructuring (RTDS). The 
principle is very similar to a hybrid-test. A part of the specimen is physically tested (the cable) 
and a part is modelled numerically (the deck) (Marsico et al. 2009). A  Matlab-Simulink model 
is used to simulate the deck behaviour and to give us the possibility to change its characteristics 
just using an input by a computer. This technique lets us study a cable and connect it with many 
different substructures. 
 
In this work we analyze only one cable’s mode shapes under deck excitations. The scope is 
defining the instability point that is considered when the cable response is out-of-plane. 
The scope is to identify the excitation amplitudes at which out-of-plane motion is triggered as a 
function of forcing frequency. The point at which the out-of-plane motion is triggered there is a 
loss of local stability of the zero-amplitude response, we term this the instability point. For this 
research we are interested on three fundamental modes in order to define the relation between in-
plane and out-plane modes. In particular the most significant parametric excitation occurs at the 
2:1 resonance ratio, that means the second out-of-plane is very close the first in-plane frequency. 
This phenomenon was observed analytically and experimentally. The tests have been conducted 
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at the Earthquake Engineering Laboratory at University of Bristol on a cable long 5.4 m where 
the deck was simulated numerically.  
A comparison of the results shows a good agreement between the analytical and the experimental 
model. 
 

THE THEORETICAL MODEL 
 

The model of the cable-deck interaction system is shown schematically in Figure 1, where u ,v 
and w are axial, out-of-plane transverse and in-plane transverse displacements of the cable 
respectively and θ is the angle of inclination measured from the horizontal line in the gravity 
plane. The cable is fixed at the upper end and an oscillator is included at the lower end. This 
oscillator represents a particular global mode of vibration of the bridge that is particularly likely 
to interact with the cable since its frequency is close to twice the first out-of-plane natural 
frequency of the cable. For the cable dynamics we adopt the model equations derived by 
Warnitchai et al. (1995) which includes the effects of modal coupling and of support motion at 
both ends of the cable. 

 
Fig. 1. Cable-deck interaction phenomena: cable-sdof system. 

 
The following set of equations capture the modal behaviour of a taut cable subject to support 
movement. Firstly the linearized cable dynamics were considered, under the assumptions that sag 
is small compared to the length of the cable, the dynamics along the cable are insignificant, and 
the amplitude of vibration is small compared with the sag such that the compatibility equation 
can be linearized. The mode shapes for the linearized system in both the in-plane and out-of-
plane directions were calculated. These modes shapes were then used in the derivation of the 
modal equations of motion where the assumption that the amplitude of vibration is small 
compared to the sag is relaxed by using a nonlinear compatibility expression. or the out-of-plane 
and anti-symmetric in-plane modes, the mode shapes for the linearized system are assumed to be 
sinusoidal. The symmetric in-plane modes are more complex (Irvine 1981) calculating the 
nonlinear terms the symmetric in-plane modes are also taken to be sinusoidal, a reasonable 
assumption for systems with taut cables, given that the nonlinear terms are expected to be small 
compared to the linear terms. The resulting modal representation of the out-of-plane cable 
motion may be expressed as 
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and the in-plane cable motion as 
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where yn and zn are the out-of-plane and in-plane generalized displacement of the cable in the nth 
mode respectively; subscripts a and b denote the top and bottom anchorage points respectively; 
myn=mzn=m is the modal mass (m=ρ A L/2); L is the cable length; σs is the cable static stress; λ2 
is Irvine's parameter (Irvine 1981), A is the cross section area, ρ is the density and E is the 
Young's Modulus. The  effective axial modulus of the cable, Eq, the distributed weight 
perpendicular to the cable cord, γ, and the parameters kn, νnk, βnk, ηn, αn, λ, and Fyn and Fzn  
which represent external cable loading in the y and z direction respectively are given in Marsico 
et al.(2009). The out-of-plane and in-plane natural frequencies, ωyn and ωzn respectively,  are 
given by  
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The factor kn represents the effect of sag and for even n, kn is zero. For n odd,  kn  is a positive 
value at most of the order of 1x10-2. Therefore as a first approximation we can neglect  kn  and 
calculate the in-plane natural frequencies with the same formula used for out-of-plane 
frequencies. It is assumed that damping can be modelled as viscous with modal damping ratios 
ξzn  and ξyn obtained experimentally. The deck is modelled as a single degree-of-freedom system, 
so the resulting equation of motion is: 
 

( ) eFTKCM =+++ θδδδ sin  (4) 

where M, C and K are mass, damping and stiffness of the oscillator (i.e., deck) and δ is the deck 
displacement. T is the dynamic cable tension, which is obtained from the cable dynamic stress. 
We apply Fe=Fsin(Ωt) where F is the amplitude of the excitation force and  Ω is the forcing 
frequency for the cable excited vertically at the bottom, anchorage (point b). 
Finally the dynamic tension (there is also a static component due to pre-tensioning and self 
weight) in the cable may be calculated from the compatibility equation (Lorenzo et al. 2003) 
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The oscillator is excited vertically by a external force of amplitude F and frequency Ω. Noting 
that ωy1≠ ωz1 and ωz2= ωy2=2ωy1, due to cable sag, we write ω1= ωy1 and ω2= ωy2= ωz2. 
Assuming negligible  response of other modes in the studied frequency range Ω close to ω1, we 
can then write the equation of motion for the first in-plane mode. Finally the deck equation, 
along with the compatibility equation, also can be written (see Marsico et al. 2009 for details). 
From these equations we can note that the deck frequency, ωg is effected by both the deck 
stiffness and the cable stiffness. 
 
Using the analysis proposed in Gonzalez-Buelga et al. (2007) but extending it to include the deck 
contribution, we scale the equations using the small parameter ε, such that they are in the 
standard Langrage form. The forcing frequency Ω and the oscillator (i.e. global mode) frequency 
ωg are close to twice the first out-of-plane natural frequency,  therefore we write Ω= ω2(1+μ). 
Using this, taking into account that ω2=2ω1 and applying the time transform τ=(1+ε μ)t, we can 
write the scaled equations of motions. These equations are now in a form which can be averaged. 
See Verhulst et al. (1996) for more details on the averaging method. 
 
Localized Stability  
 
In this section we examine the Equations to assess the stability boundary of the semi-trivial 
solution which physically corresponds to the point at which the cable starts to have out-of-plane 
response when both the input and previous response were in-plane (Marsico et al. 2009). The 
external excitation will lead directly to in-plane cable and oscillator motions. With increasing 
excitation amplitude either of the out-of-plane modes can be excited, marking the boundary of 
the semi-trivial solution in the chosen parameter space. For excitation of either out-of-plane 
modes there must be localized instability about the zero amplitude response for that mode. To 
find the boundary of the semi-trivial solution in parameter space we therefore examine the 
localized stability of each out-of-plane mode about the zero point assuming that the other out-of-
plane mode has zero averaged amplitude. For the first out-of-plane mode we can write 
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where we have set the y2 mode amplitude to zero and neglected the higher order y1ca and y1sa 
terms as we are considering the stability about the y1a=0 point (Gonzalez-Buelga et al. 2008). 
The resulting eigenvalues of the matrix in Eqn.(6), denoted χ (where we apply the scaling χ→εχ, 
are given by the roots of 
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We note that initially when the excitation amplitude is small (such that Δ and 2
2aZ  are small) the 

eigenvalues of the matrix have negative real parts and hence the stable solution set is from zero 
excitation up to the boundary at which the real part of one of the eigenvalues is zero. This 
stability boundary is given by 
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where 222
saca δδ +=Δ . Using the same technique for the second out-of-plane mode and noting that 

ω2=2ω1 and W22=4W12. The stability boundary is defined by: 
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Note that for 23 yξμ < the second out-of-plane mode is stable about the zero amplitude position 

for all Z2a and hence for all oscillator amplitudes Δ. The steady state displacement of the 
oscillator is: 
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and the response in the in-plane second mode is: 
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In order to calculate the first out-of-plane stability boundary, Eqns. (7) and (11) have to be 
solved simultaneously. The static tension of the cable is 286 N. For low amplitude deck 
vibration, 0.5% damping is typical, but there is evidence that the damping is amplitude 
dependent, so as we are assuming nonlinear interactions, due to larger amplitude excitation, a 
value of 1% is assumed. The natural frequencies of the cable are detailed in Tab.1. From 
experimental data the modal damping over the range of oscillation amplitude of interest was 
estimated to be ξ=0.2% for all modes. 

Table 1.  Cable natural frequencies. 
 ωy1 [rad/sec] ωy2 [rad/sec] ωz1 [rad/sec] ωz2 [rad/sec] 

Experimental 3.25·2π 6.51·2π 3.34·2π 6.51·2π 
Theoretical 3.25·2π 6.51·2π 3.32·2π 6.51·2π 
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THE EXPERIMENTAL MODEL 
 

Many tests at the Earthquake Engineering Laboratory of Bristol University have been carried out 
on the cable equipped in the Lab (Figure 2). It is 5.4 m long with diameter 0.0008 mm and to 
increase its weight 22 lead masses have been applied, spaced each 250 mm, except the first one 
at the bottom which distances 200 mm. These masses will be very useful to acquire data during 
the tests because they give us the possibility to visualise the discrete points for the mode 
vibrations.  It is fixed on the top where manually is possible to increase or decrease the static 
tension until the value we are interested. The tension is measured in volt by a load cell and 
visualized in the acquisition box. This value can be checked using software for control installed 
on the computer for the input data giving back the converted value in Newton. At the top a single 
axial S shape load cell  measures the tension in the cable. At the bottom it is connected with a 
steel beam representing the behaviour of the deck in a common cable-stay bridge through a 
multiaxial (six DOF) load cell and a vertical LVDT with limit displacement of ±10mm.  The 
actuator has 10 kN maximum force and ±150 mm displacement. Therefore it can also measure 
the displacement thanks to the internal LVDT but because the reduced dimension of the cable is 
better using the smaller one connected with the deck. 

 

 
Fig. 2. Experimental test set up. 

 
A very complex system is used for the input and output data (Figure 3). A Simulink file was 
created to connect the given input data, and record the results. A big influence is given by the 
delay from the input and acquisition systems. The input data are inserted in the computer 
installed in the Laboratory and in particular we can set the amplitude, frequency and delay for 
different kind of tests. This computer is connected with the set up for the test model and the 
acquisition instruments so we can verify the values applied. Using a monitoring system the data 
go to another pc able to measure the difference and optimize the results. All the data are acquired 
in another pc using the Video Gauge System (Figure 4). In particular two cameras installed in the 
Laboratory are used. The first one is frontal and is able to record and visualize the in plane 
motion and the second one is lateral and gives us the out-of-plane motion behaviour. 
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So the Video Gauge software acquires the masses' movements and we are able to define the 
vibration modes of the cable. Another software installed on the same PC renders the relation 
between frequency and amplitude considering the displacement in pixels because it is a video 
acquisition systems. A program was developed to convert the data from pixel to the SI units and 
it's very important to display the displacement.    
 
The actuator imitates the deck and excites the cable with a sine wave input. It works using the oil 
pump with 100 l/min capacity, pressure 23 MPa and controlled by the command cabin in the 
Laboratory. From this cabin we can set the oil pressure for the tests on the cable. 
 

 

     
Fig. 3. Input system. 

 

 
Fig. 4. Video gauge system. 
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AGREEMENT BETWEEN THEORETICAL AND ANALYTICAL MODEL 

 
The analytical stability boundaries picture is plotted in Figure 5 where the solid red line 
represents the analytical results for different value of μ (where μ is q-1  and q is the ratio  
between ωg -oscillator frequency- and ω2 -second out of plane frequency-),  the green dots 
represent stable and the blue diamantes unstable experimental points. It is very interesting to 
observe that the instability for  Ω/ω1 >2.00 are experimentally for both verified the second out of 
plane modes and first in plane modes. We can note that close to the resonance point  the stability 
region becomes very small. Also we note that in the region where the turning point is below the 
theoretical stability boundaries, see Figure 5, the Δ required for instability of the semi-trivial 
solution is governed by the theoretical stability boundary rather than the turning point 
relationship and hence the theoretical stability boundaries are conservative. 
 
Currently the most widely used stability curve when studying 2:1 resonance is the one presented 
by Lilian and Pinto da Costa (1994) which is used in practical bridge design recommendations, 
such as those produced by SETRA (2002), to provide guidance as to whether the expected cable 
anchorage motions would be large enough to initiate parametrically excited vibrations. The 
equations of the stability boundary in both works are found from a linear one-degree-of-freedom 
Mathieu-Hill type equation. Since they reduce the study to a single degree of freedom they 
calculate y1 and y2 boundaries separately, the first excited in 2:1 resonance, the second in 1:1 
resonance (due to external support excitation rather than internal resonance with the second in-
plane mode). For the y1 mode excited close to 2:1 resonance, (Lilien et al. 1994) states that the 
stability boundary is given by 
 

( )
2

1

2

22

1 2
41

2sin
2 ⎥

⎦

⎤
⎢
⎣

⎡ Ω+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Ω=Δ
ω

ξ
ωθ

ε s  (12) 

An equivalent expression is given by SETRA (2002) which is virtually the same for Ω/(2ω1)≈ 1. 
The equations, which have been verified experimentally in the section above, predict that the 
minimum excitation amplitude occurs away from resonance although the minimum amplitude 
remains approximately the same. In addition, the excitation amplitude to induce a response in the 
y1 mode is significantly less than that predicted by Lilien (1994) and SETRA (2002) for 
frequencies above resonance. This shifting of the minimum and the reduction in amplitude of the 
higher frequency sides of the stability boundary are a direct consequence of the hardening that 
cables experience due to the geometric cubic nonlinearity from concurrent vibrations in the 
second in-plane mode. This nonlinearity is not taken into account in previous stability models,  
and as a result the match with experimental data (as shown in the previous section) will be 
reduced. The reduction in amplitude of the curve shows clearly that parametric resonance can 
occur for much smaller anchorage motions that previously predicted when Ω/ω2>1.  
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Fig. 5. Stability boundaries: analytical and experimental results. 

 
 

CONCLUSIONS  
 
In this paper we have presented the interaction between in-plane and out-of-plane modes for a   
bridge cable. It can move in different modes (in-plane and out-of-plane) but we have 
concentrated just on three modes (second-in-plane, first-out-of-plane and second out-of-plane) 
because their very strictly interactions in terms of frequencies. The fixed cable supported at the 
upper end and connected at the lower end to the deck (as a single degree of freedom system) has 
been modelled and the equations to describe the modes have been defined.  
 
By including the model coupling terms, and using averaging, the three mode model has been 
used to explain some subtle dynamic behaviour which occurs around the 2:1 internal resonance 
of the in and out-of-plane modes. 
 
A part of this work consists in tests performed using a cable 5.4m long with attached masses at 
fixed intervals to simulate approximately its real weight. The Real-Time Dynamic Substructuring 
(RTDS) method has been adopted to carry out the tests and in particular the vertical excitation 
force has been applied by an actuator to give input at the lower support. 
 
The series of tests was conducted to observe the onset of oscillations in the out-of-plane modes, 
and these were compared with analysis and simulation from the three mode model. 
 
It can be noted the theoretical line represents very well the experimental results: it means that the 
procedure used in this work can be considered as a method of extending traditional Laboratory 
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test techniques. This also demonstrates the importance of including the nonlinear coupling terms 
when studying the stability boundaries close to the 2:1 resonance region. 
Future work may include using devices close the bottom of the cable or may be using more 
cables and study their interaction.  
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