

Bayesian Model Updating Framework for Simultaneous Parameter, Input, and Noise Estimation

Hamed Ebrahimian, Ph.D., P.E. Assistant Professor Abdelrahman Taha Ph.D. Student

Department of Civil and Environmental Engineering University of Nevada, Reno

Integration of Physics-Based Models with Data

Bayesian Model Updating

First-Order Approximation: Kalman Filtering

Unknown Input Excitation: Output-Only Model Updating

 $\mathbf{M}(\mathbf{\theta})\ddot{\mathbf{u}}_{k}(\mathbf{\theta}) + \mathbf{C}(\mathbf{\theta})\dot{\mathbf{u}}_{k}(\mathbf{\theta}) + \mathbf{r}_{k}(\mathbf{u}_{1:k}(\mathbf{\theta}),\mathbf{\theta}) = \mathbf{L}\mathbf{f}_{1:k}^{unknown}$

Find
$$\hat{\boldsymbol{\theta}}, \hat{\mathbf{f}}_{1:k}^{unknown} \mid \left[\hat{\boldsymbol{\theta}}, \hat{\mathbf{f}}_{1:k}^{unknown} \right] = \underset{\boldsymbol{\theta} \in \Theta, \mathbf{f} \in \mathcal{F}}{\operatorname{arg max}} p\left(\boldsymbol{\theta}, \mathbf{f}_{1:k}^{unknown} \mid \mathbf{y}_{1:k} \right)$$

Bayesian Model Updating Applications

Monitoring and Diagnosis of Aging Bridges

- Costly
- Periodic
- Subjective
- No system-level insight
- Hidden damage

- # of bridges × inspection time × chaos = ?
- Intensity-based metrics can be inaccurate!
- Inspection complexity
- Hidden damage
- No system-level insight

Maintenance

Inspection

Operational Monitoring Framework

Validation Study – NOBL Testbed

Projected Vehicle Location

Width of the Bridge

Raspberry Pi camera and battery pack

Tripod

Sandbag

Finite Element Modeling

N. Malekghaini, F. Ghahari, H. Ebrahimian, M. Bowers, E. Ahlberg, E. Taciroglu, "A Two Step FE Model Updating Approach for System and Damage Identification of Prestressed Bridge Girders," *Buildings*, 2023.

Time-Domain Model Updating

Damage Identification

Operational Monitoring of Offshore Wind Turbines

Model Updating Framework

M. Valikhani, M. Nabiyan, M. Song, V. Jahangiri, H. Ebrahimian, B. Moaveni, "Bayesian Finite Element Model Inversion of Offshore Wind Turbine Structures for Joint Parameter-Load Estimation," *Ocean Engineering*, 2024.

Time-Domain Model Updating

Application to Block Island Wind Turbine Data

M. Song, B. Moaveni, H. Ebrahimian, E. Hines, A. Bajric, "Joint Parameter-input Estimation for Digital Twinning of the Block Island Wind Turbine using Output-only Measurements," *Mechanical Systems and Signal Processing*, 2023.

16

Limitation: Modeling Error or Model-Form Uncertainty

M-S. Nabiyan, H. Ebrahimian, B. Moaveni, C. Papadimitriou, "Adaptive Bayesian Inference Framework for Joint Model and Noise Identification," ASCE Journal of Engineering Mechanics, 2022.

Adaptive Bayesian Inference for Model Updating

Joint Parameter, Input, and Noise Estimation

Non-Adaptive vs. Adaptive Estimation

Estimate E_c , α , β & Input Motion with Non-Stationary Non-Zero Mean Noise

Machine-Infused Physics-Based Model Updating

NSF CAREER Award, "Bayesian Machine-Infused Physics-Based Data Assimilation for Digital Twinning and Uncertainty Quantification of Dynamical Systems," DCSD Program, 2024.

Proof-of-Concept – Learning Material Model

Thank you!

