Objective & Motivation Experimental Program Analytical Investigation Future Work

V

UNIVERSITY of WASHINGTON

Department of Civil Engineering

Towards Improved Lateral Force Resisting Systems for Marginal Wharves

Maurizio Chiaramonte, GRA

Prof. Charles Roeder

Prof. Dawn Lehman

Prof. Pedro Arduino

- 1 Objective & Motivation
- 2 Experimental Program
 - Overview
 - Test Specimens
 - Test Results
- 3 Analytical Investigation
 - Objective
 - Simulated Facility
 - The Structure
 - The Soil
 - Analyses & Results
- 4 Future Work

Objective & Motivation

- Many US port facilities located in highly seismic regions
- Responsible for the daily transfer of \$ 5.5 billion of goods
- Current design susceptible to damage with small deformations
- Develop ductile system and less susceptible to damage

Objective & Motivation Experimental Program Analytical Investigation Future Work

Overview Test Specimens Test Results

EXPERIMENTAL PROGRAM

- Recent emphasis on pile-to-wharf connections
- Tested 16 connection specimens
 - Specimen 9 current detail
 - Specimen 15 & 16 improved controlled rocking detail

Developed connection design procedure

- Recent emphasis on pile-to-wharf connections
- Tested 16 connection specimens
 - Specimen 9 current detail
 - Specimen 15 & 16 improved controlled rocking detail

■ Developed connection design procedure

- Recent emphasis on pile-to-wharf connections
- Tested 16 connection specimens
 - Specimen 9 current detail
 - Specimen 15 & 16 improved controlled rocking detail

■ Developed connection design procedure

- Recent emphasis on pile-to-wharf connections
- Tested 16 connection specimens
 - Specimen 9 current detail
 - Specimen 15 & 16 improved controlled rocking detail

■ Developed connection design procedure

Test Specimens

■ Pile

- 24 in octagonal, precast, prestressed concrete piles
- \blacksquare 1000 psi design prestress
- 3 in clear cover

■ Connection

- (8) #10 T-Headed dowel bars
- 3 in pile embedment into deck
- 15 in debonded length of dowels
- 3/4 in CERAMAR wrap
- Annular bearing pad

Damage state	Specimen 9	Specimen 15	Specimen 16
Minor Pile Spalling	1.4%	5.5%	5.4%
Substantial Pile Spalling	3.9%	7.4%	6.4%

Damage state	Specimen 9	Specimen 15	Specimen 16
Minor Pile Spalling	1.4%	5.5%	5.4%
Substantial Pile Spalling	3.9%	7.4%	6.4%

Damage state	Specimen 9	Specimen 15	Specimen 16
Minor Pile Spalling	1.4%	5.5%	5.4%
Substantial Pile Spalling	3.9%	7.4%	6.4%

Damage state	Specimen 9	Specimen 15	Specimen 16
Minor Pile Spalling	1.4%	5.5%	5.4%
Substantial Pile Spalling	3.9%	7.4%	6.4%

Damage state	Specimen 9	Specimen 15	Specimen 16
Minor Pile Spalling	1.4%	5.5%	5.4%
Substantial Pile Spalling	3.9%	7.4%	6.4%

The values provided are percentage radians rotation at the assumed inflection point

Specimen 9 2.5% rotation

Specimen 15 2.5% rotation

Damage state	Specimen 9	Specimen 15	Specimen 16
Minor Pile Spalling	1.4%	5.5%	5.4%
Substantial Pile Spalling	3.9%	7.4%	6.4%

Specimen 9 5.5% rotation

Specimen 15 5.5% rotation

Objective & Motivation Experimental Program Analytical Investigation Future Work Objective Simulated Facility The Structure The Soil Analyses & Results

ANALYTICAL INVESTIGATION

Objective

Using OpenSees as the analysis platform and GiD as the postprocessor ...

- Model a reference wharf facility and evaluate the response with varying connection types
 - Model structure
 - Model soil-pile interaction
 - Model soil continuum
 - Compare wharf response with varying connections

Simulated Facility

- Port of Oakland Berth 55/56
 - Reinforced concrete deck supported by 24 in octagonal prestress concrete piles w/ conventional dowel connections
 - Assumed typical bay soil profile

Simulated Facility

- Port of Oakland Berth 55/56
 - Reinforced concrete deck supported by 24 in octagonal prestress concrete piles w/ conventional dowel connections
 - Assumed typical bay soil profile

Simulated Facility

- Port of Oakland Berth 55/56
 - Reinforced concrete deck supported by 24 in octagonal prestress concrete piles w/ conventional dowel connections
 - Assumed typical bay soil profile

■ Developed pile model & validated against fifteen tests

Joen et al. (1988)

Falconer et al. (1988)

- Developed connection model & validated against four tests
- Implemented within the port model

- Developed pile model & validated against fifteen tests
- Developed connection model & validated against four tests

Jellin et al. (2007)

Stringer et al. (2010)

■ Implemented within the port model

- Developed pile model & validated against fifteen tests
- Developed connection model & validated against four tests

Jellin et al. (2007)

Stringer et al. (2010)

■ Implemented within the port model

- Developed pile model & validated against fifteen tests
- Developed connection model & validated against four tests
- \blacksquare Implemented within the port model

■ Pile-soil interaction through use of uniaxial springs

■ Free field wave propagation and lateral movement

- Pile-soil interaction through use of uniaxial py springs
- Free field wave propagation and lateral movement

- Pile-soil interaction through use of uniaxial py springs
- Free field wave propagation and lateral movement

- Pile-soil interaction through use of uniaxial py springs
- Free field wave propagation and lateral movement

Analysis & Results Static pushovers

Analysis & Results Static pushovers

- Static pushovers
- Dynamic time hystories
 - Selected suite of thirteen ground motions
 - Scaled ground motions to 2%, 5%, and 10% P.E. in 50 yrs

Objective & Motivation Experimental Program Analytical Investigation Future Work

FUTURE WORK

Future Work

- Complete suite of motions & analysis
- Probabilistic analysis of crane response (Kosbab & Jacobs 2010)
- Final report
- Evaluate wharf response with large displacements liquefiable layers
- Evaluate alternate systems

Future Work

- Complete suite of motions & analysis
- Probabilistic analysis of crane response (Kosbab & Jacobs 2010)
- Final report
- Evaluate wharf response with large displacements liquefiable layers
- Evaluate alternate systems

Objective & Motivation Experimental Program Analytical Investigation Future Work

THANK YOU! QUESTIONS?

Click for movie

