Computational and Experimental Investigation of Circular Bridge Columns of Different Sizes

Daniel Wilcoxon, MEng Candidate

Pardeep Kumar, PhD Candidate Hyerin Lee, PhD Candidate Selim Günay, Post-Doc Researcher Khalid M. Mosalam, Professor and Vice Chair University of California, Berkeley

PEER TSRP Meeting, Richmond - CA, 5/2/2011

Tasks

- Perform a literature review of tests and models for circular RC columns with confining media accounting for size effect.
- Develop a theoretical model for confined RC circular sections addressing the <u>size effect</u> in a rigorous manner.
- Develop a computational model with nonlinear <u>3D FEM</u> for confined RC circular sections.
- Calibrate the models using past tests of circular columns of different sizes.
- Compare the models to recent tests in Japan and UC-San Diego and upcoming tests at UC-Berkeley.
- Implement a 3D constitutive model of confined RC sections, based on the 3D FE model, into <u>OpenSees</u>.

Background Size Effect in RC

- G_{fc} = Compressive fracture energy as a material property
 - Energy released per area of crack propagation
 - More research for estimating the tensile fracture energy
 - Affected by max. aggregate size, aggregate content, aggregate fineness modulus, cement type, w/c, ... etc.
 - Needs to be determined through testing or empirically, e.g.

✓ Mizuno, Nakamura, Higai (1999): $G_{fc} = 8.8 \sqrt[3]{f'_c}$

✓ Lertsrisakulrat, Watanabe, Matsuo, Niwa (2000): $G_{fc} = 0.99 \sqrt[3]{f_c'^2}$

• Energy released within a plastic hinge of length *Lp* :

$$G_{fc}/L_p = \int \sigma(\varepsilon) \cdot d\varepsilon$$

- Shows size dependence inverse relationship between toughness and characteristic length
- Simplified assumption for pure axial compression but not straight forward for combined forces (P, V, M)

Computational Model Confinement in RC Section (RCFiber)

Computational Model Cyclic Loading & Confinement in RC

- Unloading-reloading rules [Lokuge et al, 2004]
- Stress-strain relationship invariant in principal shear space
 Modified to account for variable
 - confinement and hysteretic energybased envelope reduction factor

Experimental [Lokuge et al, 2004] vs. simulated axial and lateral stress-strain response

Envelope experimental [Ahmad & Shah, 1982] validation for unconfined cylinders and confined with tie spacing = s

Physical Models and Calibration Outline

Columns made of pressurized grout Cyclic testing w/ variable axial load

ŕ.

- Scaled columns under hrz. & vl. motion ✓ 2D seismic testing
 - 1/3-Scale of UCSD column ✓ 1D seismic testing
- □ UCSD
 Full-scale column
 ✓ 1D seismic testing

Physical Models and Calibration Modeling Assumptions

Each section has 4 "NonlinearBeamColumn" elements with 3 integration points

Physical Models and Calibration Modeling Assumptions

Physical Models and Calibration UCB – Scaled columns made of pressurized grout

No coarse aggregate
 Comparison with conventional mix design
 Cyclic Loading

2	Concrete	(6)#6	#4@3"	0.0
3	Grout	(6)#6	#4@3"	300.0
4	Concrete	(6)#6	#4@3"	300.0
5	Grout	(6)#6	#4@2"	300.0

Physical Models and Calibration UCB – Scaled columns made of pressurized grout

Grout specimen 1 - no added axial load
 Modeling - linear geometric transformation

Physical Models and Calibration UCB – Scaled columns made of pressurized grout

Grout specimen 3 - 300 kip axial load
Medaling

Modeling – corotational geometric transformation

PI: Prof. Jose RestrepoUnidirectional

□ Full scale - 24' height 4' diameter

- Comparison of:
 - Experimental Response
 - Concrete02 with Standard Fiber Section Simulation
 - ConcreteBLE with RCFiber Section Simulation

Experimental Response	Concrete02 + Fiber	ConcreteBLE + RCFiber	
<u>EQ1</u>	EQ1	EQ1	
Tip Shear [kips]	Base Shear [kips]	Base Shear [kips] 0 -100	
-200 -10 0 10 Drift [%]	-200 -10 -5 0 5 10 Drift [%]	-200 -10 -5 0 5 1 Drift [%]	
EQ1 6000 [kb-ft] 4000 2000 0	EQ1 6000 [<i>t</i>] 4000 2000 0	EQ1 6000 [<i>t</i>] 4000 2000 0	
-2000 -6000 -6000 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 Curvature [1/1000in]	-2000 -4000 -6000 -2 -1 0 1 2 Curvature [1/1000in]	-6000 -2 -1 0 1 -6000 -2 -1 0 1	

Unidirectional

□ 1/3 scale - 8' height 16" diameter

Description	UCSD	UC	Scaling Factor
		Berkeley	
Between footing and column top	288	96	$S = \frac{288}{96} = 3$
Include clear cover	48	16	$S = \frac{48}{16} = 3$
$\rho_{axial} = P_{axial} / \left(A_g f_c' \right)$	5.34%	5.51%	$S = \frac{5.34}{5.51} = 0.97$
$M_{topblock} + M_{beams} + M_{lead blocks}$	521.9	62.585	$S^2 = \frac{521.9}{62.585} = 8.34, \ S = 2.9$
$\rho_L = A_{st} / A_g$	1.55	1.59	$S = \frac{1.55}{1.59} = 0.98$
$\rho_{\mathcal{V}} = \left(4A_{\mathcal{V}}\right) / \left(D_{core}s\right)$	0.953	0.976	$S = \frac{0.953}{0.976} = 0.98$
<i>UCSD</i> = #11, <i>UCBerkeley</i> = #4	1.56	0.20	$S^2 = \frac{1.56}{0.20} = 7.8, \ S = 2.8$
UCSD = 2#5, UCBerkeley = 2#2	0.62	0.098	$S^2 = \frac{0.62}{0.098} = 6.33, \ S = 2.5$
Considering effect of both Seggregation and Buckling	6	2.75	$S = \frac{6.0}{2.75} = 2.2$
Measured above Footing Top	288	102	$S = \frac{288}{102} = 2.8$
*See Calculations	8778	223	$S^4 = \frac{8778}{223} = 39.4, \ S = 2.5$
	Between footing and column top Include clear cover $\rho_{axial} = P_{axial} / (A_g f_c)$ $M_{topblock} + M_{beams} + M_{lead blocks}$ $\rho_L = A_{st} / A_g$ $\rho_V = (4A_V) / (D_{core}s)$ $UCSD = \#11, UCBerkeley = \#4$ $UCSD = 2\#5, UCBerkeley = 2\#2$ Considering effect of both Seggregation and Buckling Measured above Footing Top *See Calculations	DescriptionCCODBetween footing and column top288Include clear cover48 $\rho_{axial} = P_{axial} / (A_g f_c)$ 5.34% $M_{topblock} + M_{beams} + M_{lead blocks}$ 521.9 $\rho_L = A_{st} / A_g$ 1.55 $\rho_V = (4A_V) / (D_{core}s)$ 0.953UCSD = #11, UCBerkeley = #41.56UCSD = 2#5, UCBerkeley = 2#20.62Considering effect of both Seggregation and Buckling6Measured above Footing Top288*See Calculations8778	Description OCOD Berkeley Between footing and column top 288 96 Include clear cover 48 16 $\rho_{axial} = P_{axial} / (A_g f_c)$ 5.34% 5.51% $M_{topblock} + M_{beams} + M_{lead blocks}$ 521.9 62.585 $\rho_L = A_{st} / A_g$ 1.55 1.59 $\rho_V = (4A_V) / (D_{core} S)$ 0.953 0.976 UCSD = #11, UCBerkeley = #4 1.56 0.20 UCSD = 2#5, UCBerkeley = 2#2 0.62 0.098 Considering effect of both 6 2.75 Seggregation and Buckling 288 102 *See Calculations 8778 223

Comparison of:

Concrete02 with Standard Fiber Section Simulation

ConcreteBLE with RCFiber Section Simulation

ConcreteBLE with RCFiber Section Simulation, Length Scaled by 1/3

Concrete02 + Fiber	ConcreteBLE + RCFiber (1/3)	ConcreteBLE + RCFiber
EQ1 200 [kips] 200 Sear (kips] 200 -200	EQ1 22.2 [kips] 0 Spear (kips] 0 Spear (kips] 22.2 0 Spear (kips] 22.2 22.2 (kips] (kip))	EQ1 200 Base Shear [kibs] 0 ear [kibs] 0 - 100 - 200
-10 -5 0 5 10 Drift [%] EQ1 6000 F 4000 F	EQ1 221.7 F 147.8 73.9 0 -73.9 -221.7 -6 -3 0 3 6 Curvature [1/1000in]	EQ1 6000 [1-4000 2000 -2000 -6000 -2 -1 0 1 2 Curvature [1/1000in]

Physical Models and Calibration UCB – Scaled columns under hrz. & vl. motion

Conclusions and Future Tasks

- Accounting for concrete softening behavior and realtime confining pressures give a more realistic response.
- Results from scaled specimens in physical testing show more relative energy dissipation than larger prototypes.
- □ Size effect should be accounted for in modeling.
- The new material and fiber section models consider explicit parameters that depend on the size of the modeled column. Further calibration is still needed.
- Damage models should be calibrated and implemented for different mix designs and confinement conditions.

Conclusions and Future Tasks

- Complete physical testing of the 1/3-model (concrete casting is taking place TODAY!)
- Further calibration of the material and fiber section models is underway
- Comparison between findings and code provisions (e.g. ACI, AASHTO, CALTRANS)
- Release ConcreteBLE material, RCFiber section and Damage models in the next version of OpenSees