Probabilistic Performance-Based Optimum Seismic Design of (Bridge) Structures

> PI: Joel. P. Conte Graduate Student: Yong Li

Sponsored by the Pacific Earthquake Engineering Research Center

Outline

(I) PEER Performance Based Earthquake Engineering (PBEE) Methodology

- Probabilistic Seismic Hazard Analysis
- Probabilistic Seismic Demand Hazard Analysis
- Probabilistic Seismic Damage Hazard Analysis
- Probabilistic Seismic Loss Hazard Analysis

(II) Parametric PBEE Analysis of SDOF System

- * Yield strength F_v as varying parameter
- Hardening ratio b as varying parameter
- * Both mass m and initial stiffness k_0 as varying parameters (with fixed k_0/m)
- * Mass m as varying parameter
- * Initial stiffness \mathbf{k}_0 as varying parameter

(III) Optimization Formulation for Probabilistic Performance Based Optimum Seismic Design

(I) PEER PBEE Methodology (Forward PBEE Analysis)

SDOF Bridge Model

• Single-Degree-of-Freedom Bridge Model:

SDOF bridge model with the same initial period as an MDOF model of the Middle Channel Humboldt Bay Bridge previously developed in OpenSees.

Site Description and Prob. Seismic Hazard Analysis

- Site Location: Oakland (37.803N, 122.287W)
- Site Condition: $V_{s30} = 360 \text{m/s} \text{ (Class C-D)}$
 - Uniform Hazard Spectra are obtained for 30 hazard levels from the USGS 2008 Interactive Deaggregation software/website (beta version)
- Uniform Hazard Spectra and M-R Deaggregation:

Deaggregation ($T_1 = 1$ sec, 2% in 50 years)

Earthquake Record Selection

• Earthquake Record Selection:

- Records were selected from NGA database based on geological and seismological conditions (e.g., fault mechanism), M-R deaggregation of probabilistic seismic hazard results, and local site condition (e.g., V_{s30})
 - NGA Excel Flatfile (3551 records)
 - Mechanism: Strike-slip (→1004 records)
 - Magnitudes: 5.9 to 7.3 (\rightarrow 652 records)
 - Distance: $0 40 \text{ km} (\rightarrow 193 \text{ records})$
 - V_{s30} : C-D range (\rightarrow 146 records)

146 horizontal ground motion components were selected from NGA database

• Seismic Hazard Curve (for single/scalar Intensity Measure IM):

$$v_{\mathrm{IM}}(\mathrm{im}) = \sum_{i=1}^{N_{\mathrm{fit}}} v_i \cdot \int_{R_i} \int_{M_i} P[\mathrm{IM} > \mathrm{im}|\mathrm{m},\mathrm{r}] \cdot f_{M_i}(\mathrm{m}) \cdot f_{R_i}(\mathrm{r}) \cdot \mathrm{dm} \cdot \mathrm{dr}$$

• Least Square Fitting of 30 Data Points (*IM*_i, *MARE*_i) from USGS:

 $\sum_{a} (T_1, \xi = 5\%)$

- > Data Points: $(x_i, y_i) = (IM_i, PE50_i), i = 1, 2, \dots, 30$
- Fitting Function (lognormal CCDF): $g(x, \theta_1, \theta_2) = 1 \Phi\left(\frac{\ln x \theta_1}{\theta_2}\right)$

• Demand Hazard Curve:

$$v_{EDP}(edp) = \int_{IM} P[EDP > edp | IM] | dv_{IM}(im) |$$

Complementary CDF of EDP given IM Seismic hazard curve

- Probabilistic Seismic Demand Analysis conditional on IM:
 - "Cloud Method" based on following assumptions:
 - 1. Linear regression after **In** transformation of predictor and response variables:

 $\hat{\mu}_{EDP|\ln IM} = \mathrm{E}[\ln EDP | IM = im] = \hat{a} + \hat{b} \ln IM$

2. Variance of EDP independent of IM:

$$\hat{S}^{2} = \frac{\sum_{i=1}^{n} \left(\ln edp_{i} - \left(\hat{a} + \hat{b} \ln im_{i}\right) \right)^{2}}{n-2}$$

3. Probability distribution of EDP|IM assumed to be Lognormal:

$$\frac{EDP \mid IM \sim LN(\lambda, \varsigma)}{\varsigma = \hat{\sigma}_{\ln EDP \mid IM}} = \hat{a} + \hat{b} \ln IM \text{ and}$$
$$\varsigma = \hat{\sigma}_{\ln EDP \mid IM} = \sqrt{\hat{S}^2}$$

• EDP: Displacement Ductility

Regression analysis results and PDF/CCDF for EDP|IM shown at three hazard levels commonly used in Earthquake Engineering:

• EDP: Peak Absolute Acceleration

Regression analysis results and PDF/CCDF for EDP|IM shown at three hazard levels commonly used in Earthquake Engineering:

Where the peak absolute acceleration is defined as: $A_{Abs.} = Max_{0 < t < t_d}$

• EDP: Normalized Hysteretic Energy Dissipated

Regression analysis results and PDF/CCDF for EDP|IM shown at three hazard levels commonly used in Earthquake Engineering:

Where the Normalized hysteretic energy is defined as: $E_{\mu} =$

 $F_{v}U$

• Demand Hazard Curve:

$$v_{EDP}(edp) = \int_{IM} P[EDP > edp | IM = im] | dv_{IM}(im) |$$

• Deaggregation of $v_{EDP}(edp)$ with respect to IM:

$$\begin{aligned}
\nu_{EDP}(edp) &= \int_{IM} P \Big[EDP > edp \Big| IM \Big] \frac{d\nu_{IM}(im)}{dim} dim \\
&= \sum_{i} P \Big[EDP > edp \Big| IM = im_{i} \Big] \frac{d\nu_{IM}(im_{i})}{\Delta(im)_{i}} \cdot \Delta(im)_{i} \\
\underbrace{\text{Contribution of bin}}_{IM = im_{i} \text{ to } \nu_{EDP}(edp)
\end{aligned}$$

• Demand Hazard Curve for $EDP = Displacement Ductility \mu_d$:

• Demand Hazard Curve for **EDP = Peak Absolute Acceleration:**

• Demand Hazard Curve for **EDP** = **Normalized E_H Dissipated**:

Deaggregation

wrt IM

2

= 5

= 10

Probabilistic Capacity (Fragility) Analysis

• Fragility Curves (postulated & parameterized):

Defined as the probability of the structure/component exceeding kth limit-state given the demand.

$$P[DM > ls_k | EDP = edp]$$

$$\downarrow k-th limit state$$

Developed based on analytical and/or empirical capacity models and experimental data.

Probabilistic Capacity (Fragility) Analysis

• Fragility Curve Parameters:

Associated EDP	Limit-states	Predicted Capacity	Measured-to-predicted capacity ratio (Normal distributed)	
			Mean	C.O.V
Displacement Ductility	Ι	$\mu = 2$	1.095	0.201
	II	μ = 6	1.124	0.208
	III	μ = 8	1.254	0.200
Peak Absolute Acceleration [g]	Ι	$A_{Abs.} = 0.10$	0.934	0.128
	II	$A_{Abs.} = 0.20$	0.952	0.246
	III	$A_{Abs.} = 0.25$	0.973	0.265
Normalized Hysteretic Energy Dissipated	Ι	$E_{\rm H} = 5$	0.934	0.133
	II	$E_{\rm H} = 20$	0.965	0.140
	III	$E_{\rm H} = 30$	0.983	0.146

• Damage Hazard (MAR of limit-state exceedance):

$$v_{DS_{k}} = \int_{EDP} P\left[DM > ls_{k} | EDP = edp\right] | dv_{EDP}(edp) |$$

Fragility Analysis

- Deaggregation of Damage Hazard:
 - ➢ with respect to EDP:

Contribution of bin EDP = edp_i to V_{DS_k}

$$v_{DS_{k}} = \sum_{i} P \Big[DM > ls_{k} | EDP = edp_{i} \Big] \frac{|dv_{EDP}(edp_{i})|}{\Delta (edp)_{i}} \Delta (edp)_{i}$$

 \succ with respect to IM:

$$v_{DS_{k}} = \sum_{i} P \Big[DM > ls_{k} | EDP \Big] \left| \int_{IM} dP \Big[EDP > edp | IM \Big] \frac{|dv_{IM}(im_{i})|}{\Delta(im)_{i}} \Delta(im)_{i} \right|$$
Contribution of bin

$$IM = im_{i} \text{ to } v_{DS_{k}}$$

• Associated EDP = Displacement Ductility:

Associated EDP	Limit States	MARE	RP	PE50
Displacement Ductility	I ($\mu_{d} = 2$)	0.0394	26 Years	86%
	II ($\mu_{d} = 6$)	0.0288	35 Years	76%
	III ($\mu_d = 8$)	0.0231	44 Years	68%

• Deaggregation Results:

• Associated EDP = Peak Absolute Acceleration:

Associated EDP	Limit States	MARE	RP	PE50
Absolute Acceleration	$I(A_{Abs} = 0.1g)$	0.0349	29 Years	82%
	II $(A_{Abs} = 0.2g)$	0.0104	96 Years	41%
	III $(A_{Abs} = 0.25g)$	0.0048	208 Years	21%

• Deaggregation Results:

• Associated EDP = Normalized Hysteretic Energy Dissipated:

Associated EDP	Limit States	MARE	RP	PE50
Normalized	$I(E_{\rm H} = 5)$	0.0171	58 Years	57%
Hysteretic	II ($E_{\rm H} = 20$)	0.0012	833 Years	6%
Dissipated	III ($E_{\rm H} = 30$)	0.0003	3330 Years	1.5%

• Deaggregation Results:

Probabilistic Loss Hazard Analysis

• Loss Hazard Curve:

Component-wise Loss Hazard Curve:

$$v_{L_j}(l) = \int_{DM} P[L_j > l \mid DM] \mid dv_{DM} \mid = \sum_{k=1}^{nls_j} P[L_j > l \mid DS = k] |v_{DS_k} - v_{DS_{k+1}}|$$

 $nls_i = number of limit states for component j$

Only discrete damage states are used in practice.

 v_{DS_k} = MAR of exceeding the k-th limit-state and $v_{DS_{nls+1}} = 0$

Probabilistic Loss Hazard Analysis

#components

Repair Costs

• Multilayer Monte Carlo Simulation:

- > Total Loss (Repair/Replacement Cost): $L_T = \sum_{i} L_{i}$
- Computation of $\nu_{L_T}(l)$ requires n-fold integration of the joint PDF of the component losses, which is very difficult to obtain.
 - → $\nu_{L_T}(l)$ is estimated using multilayer MCS $P[L_j|DS]$

Probabilistic Loss Hazard Analysis

• Repair/Replacement Cost Parameters:

Failure Associated	Limit-states	Repair/Replacement Cost (Normal distributed)		
EDP		Mean (\$)	C.O.V.	
Displacement Ductility	Ι	146,500	0.12	
	II	246,400	0.25	
	III	350,000	0.32	
Peak Absolute Acceleration [g]	Ι	55,000	0.11	
	II	100,000	0.20	
	III	500,000	0.28	
Normalized Hysteretic Energy Dissipated	Ι	55,650	0.13	
	II	110,000	0.22	
	III	520,000	0.28	

(II) Parametric PBEE Analysis of SDOF System

• Varying Parameter: Hardening Ratio b

• Varying Parameters: Both Mass m and Initial Stiffness k₀ (period fixed):

• Varying Parameter: Mass m

(III) Optimization Formulation for Probabilistic Performance Based Optimum Seismic Design (Inverse PBEE Analysis)

Optimization Formulation of PBEE

• **Optimization Problem Formulation:**

- **Objective (Target/Desired)** Loss Hazard Curve: $V_{L_T}^{Obj}(l)$
- > Objective function: $f(k_0, F_y, b, \cdots) = \sum |v_{L_T}(l_i, k_0, F_y, b, \cdots) v_{L_T}^{Obj}(l_i)|^2$

• Optimization Performed using extended **OpenSees-SNOPT** Framework (ongoing work).

Gu, Q., Barbato, M., Conte, J. P., Gill, P. E., and McKenna, F., "OpenSees-SNOPT Framework for Finite Element-Based Optimization of Structural and Geotechnical Systems," Journal of Structural Engineering, ASCE, under review, 2011.

Jhank you !

Any Questions?