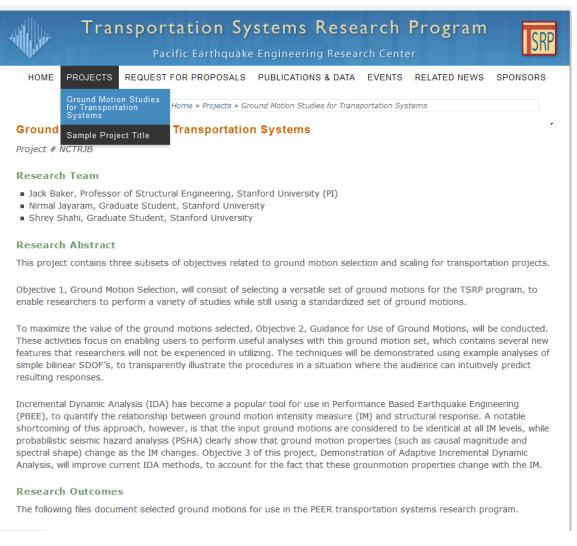
Ground motions for the PEER Transportation Systems Research Program

Jack Baker

Civil & Environmental Engineering Stanford University

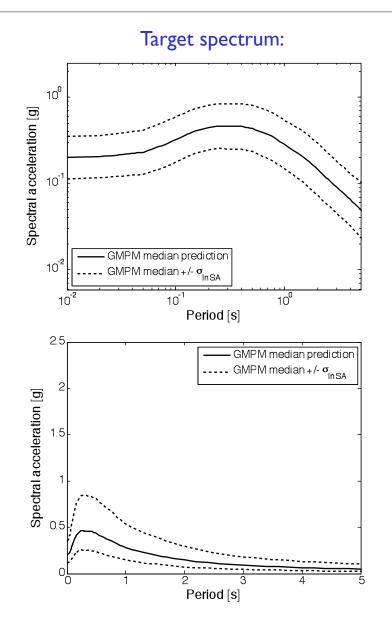


Motivation

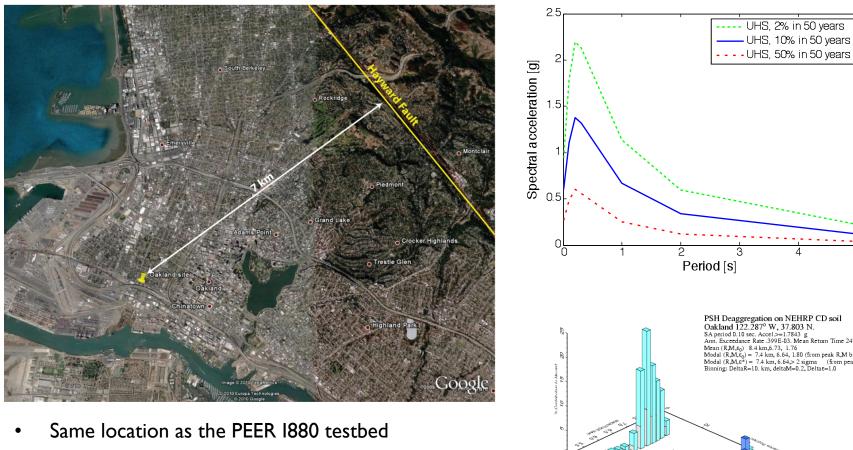
- The goal of this project is to select a standardized set of ground motions for the TSRP that
 - Can be used to analyze a variety of bridge and geotechnical systems
 - Are appropriate for a variety of locations in California (i.e., mid- to large-magnitude shallow crustal earthquakes at near to moderate distances)
- The systems of interest may be sensitive to excitation at a wide range of periods
- Some sites of interest may have the potential to experience near-fault directivity pulses
- Because these are not structure-specific and site-specific goals, ground motion selection techniques developed in previous PEER projects are not directly applicable here

The product: several standardized ground motion sets

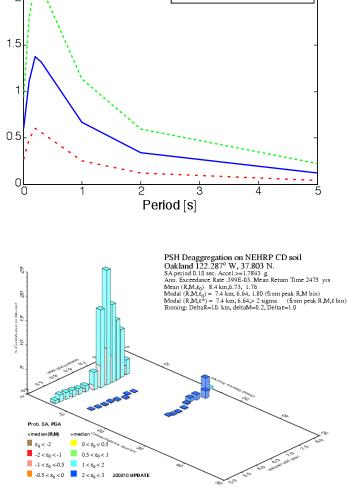
http://peer.berkeley.edu/transportation/projects/


Data format and documentation

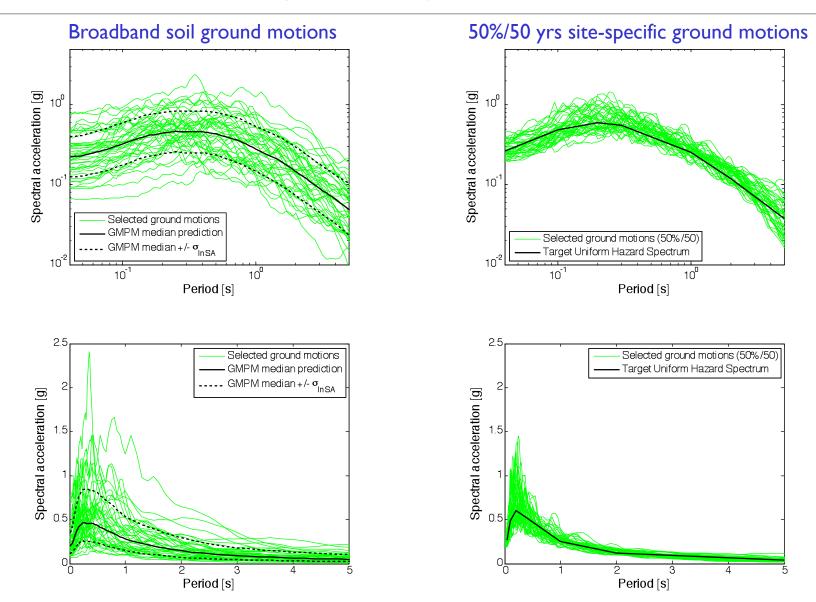
- All ground motions are three-component
- All ground motions come from the PEER NGA database, and are indexed by "NGA number" for easy cross referencing with the NGA Flatfile
- Additional information not in the current NGA Flatfile is included in supplemental spreadsheets
 - Directivity pulse periods
 - Scale factors (if applicable)
 - Component response spectra of scaled motions
 - \mathcal{E} values


Broadband ground motions

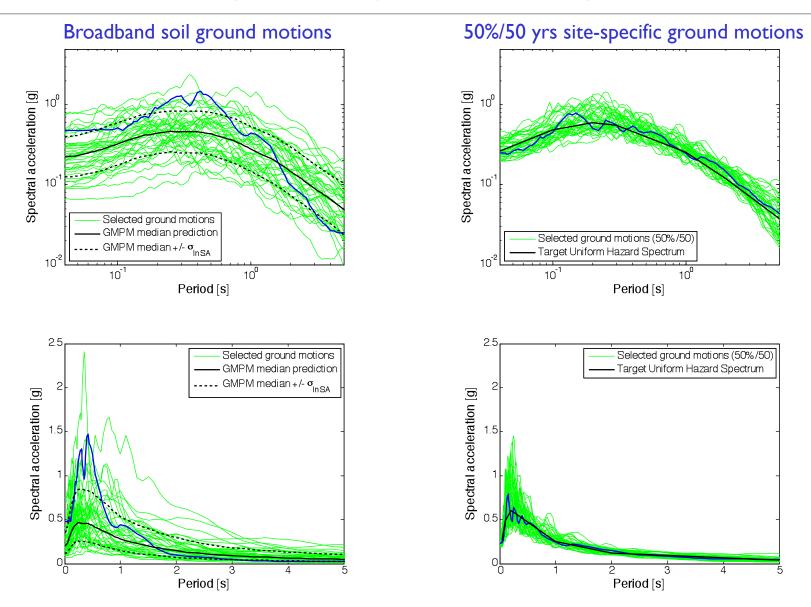
- Selected to match the median and variability in response spectra associated with an M = 7, R = 10 km strike slip earthquake
- Separate sets are provided for soil and rock conditions ($V_{s30} = 250$ m/s and 760m/s)
 - Recordings from appropriate sites
 - Target spectra account for site conditions
- A set is provided for lower-amplitude shaking (M = 6, R = 25 km V_{s30} = 250m/s)
- This required development of a new ground motion selection algorithm:


Jayaram, N., Lin, T., and Baker, J. W. (2011). "A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance." *Earthquake Spectra*, (in press).

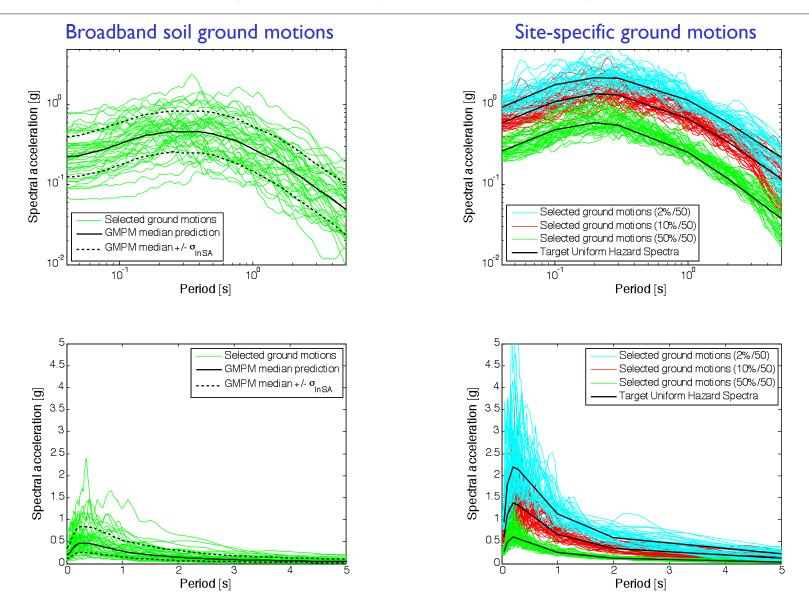
Site-specific ground motions for Oakland I-880 Viaduct

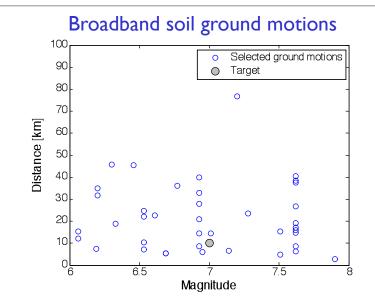


Ground motions selected to *closely* match USGS ٠ Uniform Hazard Spectra and Deaggregations

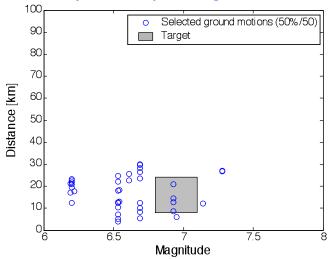


CALL 2010 Jul 14 21 07 21 Distance (R), magnitude (N),


Comparison of ground motions


Comparison of ground motion spectra

Comparison of ground motion spectra

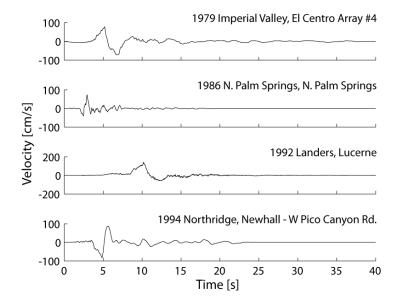

Comparison of other ground motion properties

Other properties

- Variability included
- No scaling
- Velocity pulses not specifically included or excluded

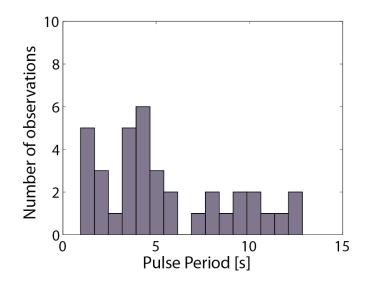
50%/50 yrs site-specific ground motions

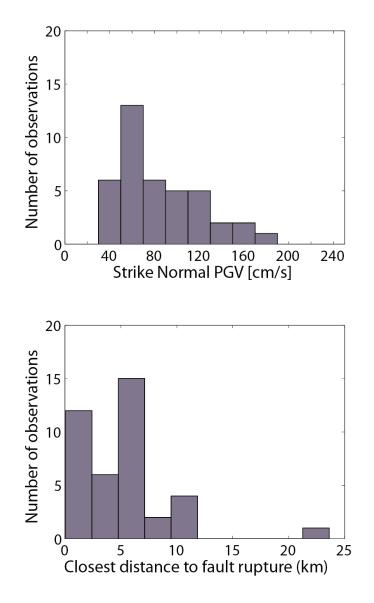
Other properties


- No variability desired in spectra or other properties
- Scaled to match targets
- Velocity pulses included in proportion to expected occurrence at the site of interest

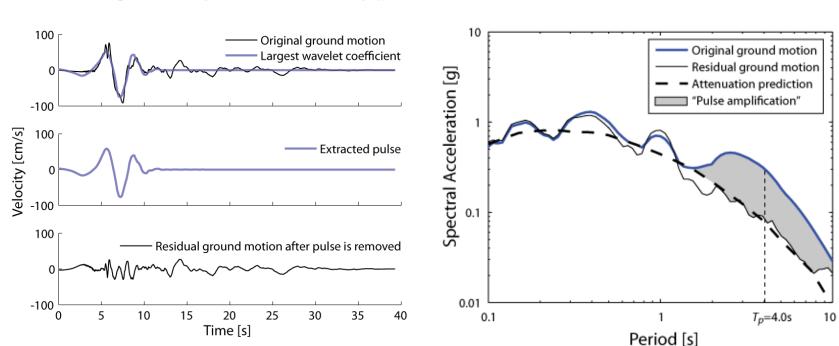
Another set of ground motions: near-fault motions with pulses

Set #3: Pulse-like ground motions


See the report above for background regarding the selection of these ground motions. Further information on the technique used to identify these ground motions is available here.


- Spreadsheet documenting the properties of the selected pulse-like ground motions. (Excel file 1.75 MB)
- Zip file containing acceleration and velocity time histories for the 40 selected pulse-like ground motions. Strike-normal, strike-parallel and vertical components are included. Separate sets of these time histories are provided for the original ground motions, extracted pulses, and residual ground motions. (Zip file 16.2 MB)
- Link to web page listing selected pulse-like ground motions, and providing plots of pulse indicators and peak ground velocities for arbitrary horizontal orientations.
- Forty ground motions with strong velocity pulses in the fault-normal component are provided
- Pulse periods vary
- The ground motions are unscaled

Near-fault motions with pulses


- These motions are all high intensity and recorded close to faults
- They have a variety of pulse periods, in recognition of the variety of structures that they might be used to analyze

J. Baker

Additional data for the near-fault motions with pulses

1979 Imperial Valley-06, El Centro Array #7

Time histories and response spectra for all three "parts" of the ground motions are available

Baker, J.W. (2007). "Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis." *Bulletin of the Seismological Society of America*, **97**(5), 1486-1501.

Provided data: summary metadata from NGA Flatfile

	А	В	С	D	E	F	G	Н	1	J	К	L
		NGA Record								Assumed Fault		
	Record	Sequence				Hypocentral		Closest Preferred		Normal		
1	number	Number	Earthquake Name	Year	Station	Magnitude	Distance	Distance	Vs30 (m/s)	Orientation	Filename_Vertical	Filename_FN
2	1	231	'Mammoth Lakes-01'	1980	'Long Valley Dam (Upr L Abut)'	6.06	15.52	15.46	345.4	282	'M7_soil_UP_1.acc'	'M7_soil_FN_1.
3	2	1203	'Chi-Chi, Taiwan'	1999	'CHY036'	7.62	44.74	16.06	233.1	292	'M7_soil_UP_2.acc'	'M7_soil_FN_2.
4	3	829	'Cape Mendocino'	1992	'Rio Dell Overpass - FF'	7.01	24.55	14.33	311.8	260	'M7_soil_UP_3.acc'	'M7_soil_FN_3.
5	4	169	'Imperial Valley-06'	1979	'Delta'	6.53	35.17	22.03	274.5	233	'M7_soil_UP_4.acc'	'M7_soil_FN_4.
6	5	1176	'Kocaeli, Turkey'	1999	'Yarimca'	7.51	25.07	4.83	297	180	'M7_soil_UP_5.acc'	'M7_soil_FN_5.
7	6	163	'Imperial Valley-06'	1979	'Calipatria Fire Station'	6.53	58	24.6	205.8	233	'M7_soil_UP_6.acc'	'M7_soil_FN_6.
8	7	1201	'Chi-Chi, Taiwan'	1999	'CHY034'	7.62	46.82	14.82	378.8	292	'M7_soil_UP_7.acc'	'M7_soil_FN_7.
9	8	1402	'Chi-Chi, Taiwan'	1999	'NST'	7.62	89.2	38.43	375.3	306	'M7_soil_UP_8.acc'	'M7_soil_FN_8.
10	9	1158	'Kocaeli, Turkey'	1999	'Duzce'	7.51	99.52	15.37	276	163	'M7_soil_UP_9.acc'	'M7_soil_FN_9.
11	10	281	'Trinidad'	1980	'Rio Dell Overpass, E Ground'	7.2	78.22	-	311.8	319	'M7_soil_UP_10.acc'	'M7_soil_FN_10
12	11	730	'Spitak, Armenia'	1988	'Gukasian'	6.77	36.68	-	274.5	212	'M7_soil_UP_11.acc'	'M7_soil_FN_11
13	12	768	'Loma Prieta'	1989	'Gilroy Array #4'	6.93	36.79	14.34	221.8	38	'M7_soil_UP_12.acc'	'M7_soil_FN_12
14	13	1499	'Chi-Chi, Taiwan'	1999	'TCU060'	7.62	46.07	8.53	272.6	278	'M7_soil_UP_13.acc'	'M7_soil_FN_13
15	14	266	'Victoria, Mexico'	1980	'Chihuahua'	6.33	38.29	18.96	274.5	228	'M7_soil_UP_14.acc'	'M7_soil_FN_14
16	15	761	'Loma Prieta'	1989	'Fremont - Emerson Court'	6.93	57.86	39.85	284.8	38	'M7_soil_UP_15.acc'	'M7_soil_FN_15
17	16	558	'Chalfant Valley-02'	1986	'Zack Brothers Ranch'	6.19	17.47	7.58	271.4	58	'M7_soil_UP_16.acc'	'M7_soil_FN_16
18	17	1543	'Chi-Chi, Taiwan'	1999	'TCU118'	7.62	44.49	26.84	215	271	'M7_soil_UP_17.acc'	'M7_soil_FN_17
19	18	2114	'Denali, Alaska'	2002	'TAPS Pump Station #10'	7.9	84.89	2.74	329.4	199	'M7_soil_UP_18.acc'	'M7_soil_FN_18
20	19	179	Imperial Valley-06	1979	'El Centro Array #/	6 52	28 Q	7 05	208 6	222	'M7 coil IID 19 acc'	'M7 coil EN 19

Provided data: documentation of metadata

4	A	В	С	D	E	F	G	Н	I.		
1	PEER broadband ground motio	ns for so	oil sites								
2	Prepared by Nirmal Jayaram a	nd Jack B	Baker, St	anford U	niversi	tv					
3	November 15, 2009					1					
4	1010101120,2005										
5	This spreadsheet provides documentat	ion for the	PEER "soi	l broadban	d" ground	motions.	A brief des	cription of	the include		
6											
7	These ground motions were selected s	o that thei	r response	spectra ma	atch the n	nedian and	log standa	rd deviatio	ns predict		
8	Magnitude = 7 earthquake								_ ·		
9	Source-to-site distance = 10 km										
10	Site Vs30 = 250 m/s										
11	Earthquake mechanism = strike slip										
12	Response spectra predictions from t	he Boore a	and Atkins	on (2008) g	round mo	tion mode	I				
13											
14											
15	"Records" Worksheet										
16	This worksheet provides basic summar	y data rega	rding the	selected gr	ound mot	ions. Colu	mns are de	fined as fo	llows:		
17											
18	Record number	Numberir	ng for the s	selected gr	ound mot	ions. This r	natches th	e numberir	ng of the tii		
19	NGA Record Sequence Number	The corre	sponding r	ecord sequ	ience nun	nber from t	the NGA Fl	atfile at htt	p://peer.b		
20	Earthquake Name	Earthquak	ke name, f	rom NGA F	atfile						
21	Year	Year of ea	rthquake								
22	Station	Name of s	station wh	ere ground	motion v	vas recorde	ed, from NO	GA Flatfile			
23	Magnitude	Moment r	magnitude	of earthqu	iake						
24	Hypocentral Distance			-							
25	Closest Distance	Closest di	stance fro	m the reco	rding site	to the rupt	tured area	(if available	e)		
26	Preferred Vs30 (m/s)										
27	Assumed Fault Normal Orientation							notions to f	fault-norm		
28	Filename_Vertical					-					
29	Filename_FN		Inthquake name, from NGA Flatfile ear of earthquake ame of station where ground motion was recorded, from NGA Flatfile oment magnitude of earthquake stance from the recording site to hypocenter. osest distance from the recording site to the ruptured area (if available) eferred Vs30 from NGA Flatfile ssumed fault-normal orientation, used for rotating ground motions to fault-n lename for the vertical component of the ground motion lename for the fault normal component of the ground motion								
30	Filename_FP	Filename	for the fau	ult parallel	compone	nt of the g	round moti	ion			
31											
32	"Response spectra" worksheet										
33	Tabulated response spectra (in unit	s of g) are	provided ł	nere for the	e 40 select	ed ground	motions				

Provided data: response spectra

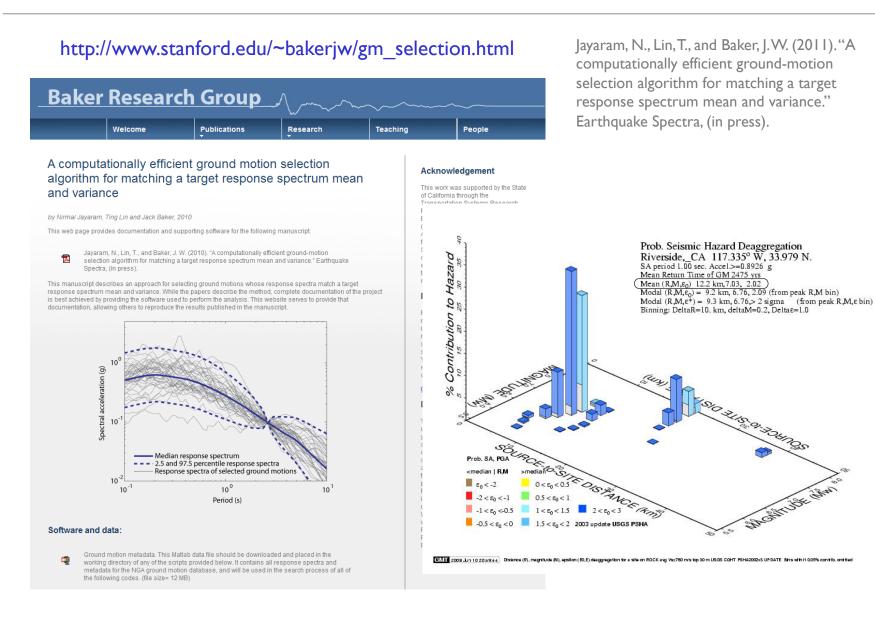
Target spectra, and response spectra for each horizontal component of each ground motion, geometric mean spectra, GMRotI50 spectra

		Period (s)	→															
		0.01	0.02	0.022	0.025	0.029	0.03	0.032	0.035	0.036	0.04	0.042	0.044	0.045	0.046	0.048	0.05	0.05
Median		0.199915	0.204768	0.207176	0.210451	0.214319	0.215212	0.217075	0.219688	0.220516	0.223641	0.225103	0.226506	0.227186	0.227854	0.229153	0.230406	0.24018
Log Standard de	viation	0.566	0.566	0.568351	0.571503	0.575164	0.576	0.577642	0.579923	0.58064	0.583321	0.584563	0.585747	0.586319	0.586878	0.587961	0.589	0.59299
Geometric mea	n of FN/I	FP compor	ients															
		Period (s)	→															
		0.01	0.02	0.022	0.025	0.029	0.03	0.032	0.035	0.036	0.04	0.042	0.044	0.045	0.046	0.048	0.05	0.05
Record #	1	0.332808	0.329604	0.331231	0.334937	0.340809	0.348155	0.369678	0.413019	0.431402	0.495294	0.521013	0.555085	0.564498	0.58352	0.566915	0.573794	0.55510
\downarrow	2	0.256526	0.256173	0.256273	0.256437	0.25674	0.256956	0.257665	0.258145	0.259775	0.259704	0.259835	0.263563	0.266454	0.267079	0.266536	0.275127	0.27538
	3	0.481281	0.481281	0.481281	0.481281	0.481281	0.481281	0.481281	0.481281	0.481281	0.481281	0.474968	0.475651	0.476949	0.47649	0.477132	0.480902	0.47826
	4	0.281412	0.281412	0.280105	0.281004	0.281889	0.28137	0.289974	0.283872	0.280184	0.283723	0.28386	0.285557	0.285505	0.285977	0.28879	0.29038	0.2883
	5	0.295792	0.295518	0.295512	0.296031	0.297932	0.299059	0.298639	0.297522	0.296478	0.302845	0.312576	0.312762	0.312444	0.309484	0.313117	0.31425	0.31212
	6	0.10198	0.101568	0.101592	0.101748	0.102378	0.102424	0.103898	0.104895	0.106341	0.10							
	7	0.312625	0.312752	0.312953	0.313301	0.314632	0.315376	0.31569	0.317871	0.316723	0.32							
	8	0.40282			0.402488					0.413368		-						-
	9				0.326134					0.327022		-			\sim			
	10				0.146941					0.150435	0	10 ⁰		\sim	XXX	$\sim \sim$.	
	11		0.205186		0.205468			0.205485		0.204091			A			K	\sim	
	12				0.299407			0.300031		0.300656		1 En						
	13				0.151871			0.152499		0.153479	0	• • •	Ha					<u> </u>
	14				0.118549				0.119359		0.11 0			HAN.				th.
	15				0.158369					0.159231	ž			Le la companya de la companya	The second		<i>ARR</i>	RAK
	16				0.399692			0.404694		0.407835		101	<u>A</u>	$\sim \sim$	\sim		ALC IN	11 AM
	17				0.102873			0.104023		0.105074	<u> </u>						MA	
	18 19			0.308157	0.308372		0.309091		0.310047		0	. [7	NH.	EAN HE
	20				0.412837			0.09033		0.430748		[] -		0	d motions		T	A COUNT
	20				0.223681				0.223681			-			prediction			
	21				0.689434				0.700731			-2	GMPI	M median	+/- σ_{InSA}			
	22				0.199424		0.19307	0.208143		0.208109	0.2	10 ⁻²	10 ⁻¹			<u></u> 10 ⁰		
	23				0.222863	0.226173	0.22696			0.237154			10		Dariad			
													0.200///		Period	[S]		

Provided data: prediction residuals (ε 's)

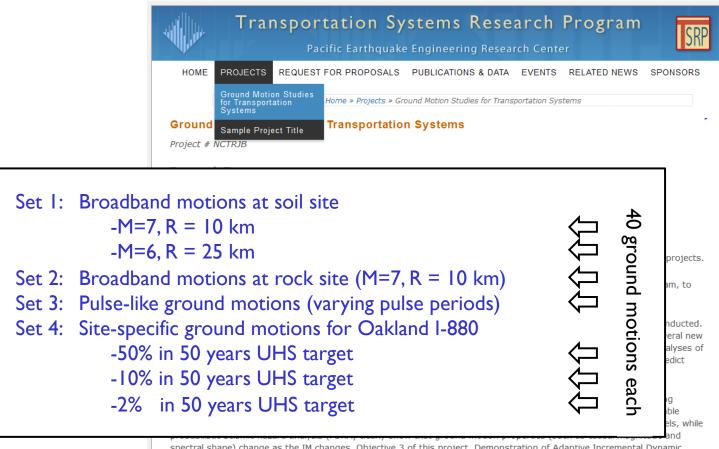
Prediction residuals for spectra of each horizontal component of each ground motion, geometric mean spectra and GMRotI50 spectra

GMRotI50 re	siduals																	
		Period (s)																
		0.01	0.02	0.022	0.025	0.029	0.03	0.032	0.035	0.036	0.04	0.042	0.044	0.045	0.046	0.048	0.05	0.055
Record #	1	1.97599	2.070995	2.107328					2.375892				2.440995			2.319344	2.302782	2.0566
\checkmark	2	0.486193	0.451764	0.431063					0.358379			0.366257		0.35803		0.329944	0.334088	0.29143
	3	0.735945	0.681398							0.502694			0.457296			0.453737		0.555183
	4	1.300931	1.237977				1.225673						1.267167	1.288469	1.316971	1.369583	1.378079	1.367975
	5	-0.78333	-0.84425	-0.85348	-0.87534	-0.92296	-0.92686	-0.95437		-0.95802	-1.00704	-1.05128	-1.05249	-1.06071	-1.07274	-1.09393	-1.11783	-1.18837
	6	-0.14199	-0.12651	-0.15622	-0.13928	-0.1176	-0.10238	-0.09282	-0.1063	-0.11006	-0.23877	-0.21774		-0.19826	-0.21574	-0.26199	-0.23943	-0.13662
	7	0.233761	0.183758	0.165135	0.146196				0.110913							0.056213		0.008242
	8	1.510041	1.494026	1.48228	1.443004								1.951417					1.88636
	9	0.522818	0.47122	0.447837	0.417461	0.38338			0.338627		0.299286				0.289967			
	10	-2.27889	-2.33414	-2.34227	-2.35612	-2.40135	-2.38173	-2.34788	-2.37924	-2.41711		-2.40016	-2.40641	-2.40926	-2.42579	-2.49936	-2.49599	-2.42422
	11	-1.32024	-1.38842	-1.41169	-1.43918	-1.45526	-1.46258	-1.50497	-1.47041	-1.45366	-1.50384	-1.47603	-1.40943	-1.38615	-1.35779	-1.33381	-1.38298	-1.51601
	12	1.187741	1.163378	1.142551	1.113136	1.083127	1.077495	1.063882	1.058017	1.053659	1.042713	1.030986	1.018672	1.01514	1.030052	1.031116	1.021673	0.918118
	13	-1.07112	-1.12879	-1.14174	-1.17062	-1.18895	-1.19568	-1.19722	-1.20885	-1.22394	-1.23503	-1.23672	-1.2589	-1.27386	-1.27667	-1.27273	-1.25109	-1.19657
	14	-0.21494	-0.26644	-0.2849	-0.30823	-0.32812	-0.32738	-0.34619	-0.3875	-0.40363	-0.37953	-0.35543	-0.32506	-0.31727	-0.30186	-0.28078	-0.30671	-0.27293
	15	0.514009	0.495334	0.485394	0.475418	0.457539	0.452002	0.438012	0.446635	0.454069	0.440093	0.409785	0.378085	0.367021	0.375302	0.403693	0.45424	0.46368
	16	1.395846	1.340358	1.300194	1.27672	1.237066	1.220102	1.20273	1.230885	1.230001	1.159907	1.170015	1.176666	1.206106	1.232247	1.283432	1.280826	1.244816
	17	-0.91818	-0.92369	-0.93212	-0.9212	-0.95125	-0.92991	-0.92706	-0.88071	-0.87041	-0.87116	-0.86617	-0.86042	-0.8579	-0.85925	-0.83398	-0.82675	-0.70842
	18	-0.92945	-0.99266	-1.02075	-1.0581	-1.09576	-1.10417	-1.12432	-1.15438	-1.16318	-1.18921	-1.19694		-1.22159	-1.23207	-1.25234	-1.25186	-1.31028
	19	1.469576	1.456961	1.443438	1.368229	1.373531	1.360512	1.30844	1.40758	1.434034	1.455144	1.468871		1.46694	1.493776	1.51584	1.509781	1.331671
	20	-2.62177	-2.71292	-2.74078	-2.77002	-2.81064	-2.81747	-2.83825	-2.88457	-2.89744	-2.8657	-2.85108	-2.83281	-2.84377	-2.87769	-2.92762	-2.87881	-2.78517
	21	0.288527	0.252802	0.239339	0.191585	0.183458	0.173882	0.140137	0.117694	0.107578	0.078925	0.069284	0.055011	0.051232	0.05182	0.067549	0.066947	-0.01511
	22	1.19644	1.155275	1.122752	1.081215	1.043309	1.040496	1.03752	1.074056	1.116071	1.102362	1.037316	1.049809	1.014076	0.998844	1.033103	1.012551	0.906702
	23	0.634736	0.603527	0.614632	0.664042	0.7132	0.686877	0.734199	0.728692	0.768508	0.559884	0.646773	0.805793	0.850958	0.869931	0.859695	0.850864	0.739682
	24	-0.35518	-0.39143	-0.45813	-0.45688	-0.54053	-0.55049	-0.544	-0.57602	-0.57438	-0.62122	-0.67273	-0.63532	-0.64555	-0.63976	-0.64228	-0.68703	-0.75054
	25	1.090358	1.056733	1.039379	1.016155	0.990562	0.986125	0.969361	0.958165	0.953237	0.921685	0.906657	0.896438	0.891137	0.885443	0.872209	0.867713	0.809944
	26	-0.53864	-0.59284	-0.59212	-0.63533	-0.66949	-0.65704	-0.63095	-0.58815	-0.59114	-0.62891	-0.61847	-0.57786	-0.53794	-0.51519	-0.5638	-0.61349	-0.60594


J. Baker

Documentation: PEER Report 2011/03

Documentation of targets, selection methodology and summary data for each selected set (106pp)



Documentation: source code for broadband and CMS selection

Final product: several standardized ground motion sets

http://peer.berkeley.edu/transportation/projects/

spectral shape) change as the IM changes. Objective 3 of this project, Demonstration of Adaptive Incremental Dynamic Analysis, will improve current IDA methods, to account for the fact that these grounmotion properties change with the IM.

Research Outcomes

The following files document selected ground motions for use in the PEER transportation systems research program.