Performance-based Evaluation of the Seismic Response of Bridges with Foundations Designed to Uplift

Marios Panagiotou

Assistant Professor, University of California, Berkeley

Acknowledgments

Pacific Earthquake Engineering Research (PEER) Center for funding this work through the Transportation Research Program

Antonellis Grigorios Graduate Student Researcher, UC Berkeley

Lu Yuan

Graduate Student Researcher, UC Berkeley

3 Questions

- Can foundation rocking be considered as an alternative seismic design method of bridges resulting in reduced:
 i) post-earthquake damage, ii) required repairs, and iii) loss of function ?
- **2.** What are the ground motion characteristics that can lead to overturn of a pier supported on a rocking foundation?
- **3.** Probabilistic performance-based earthquake evaluation ?

"Fixed" Base Design

Susceptible to significant postearthquake damage and permanent lateral deformations that:

• Impair traffic flow

• Necessitate costly and time consuming repairs

Design Using Rocking Shallow Foundations

"Fixed" base pier

Pier on **rocking** shallow foundation

Design Using Rocking Pile Caps

"Fixed" base pier

Pier on rocking pile-cap

Design Using Rocking Pile-Caps

Pile-cap simply supported on piles

Pile-cap with sockets

Rocking Foundations - Nonlinear Behavior

Rotation, Θ

Nonlinear Behavior Characteristics

Force, F

Fixed-base or

shallow foundation with extensive soil inelasticity Shallow foundation with limited soil inelasticity

Rocking pile-cap or shallow foundation on elastic soil

SDOF Nonlinear Displacement Response

Mean results of 40 near-fault ground motions

Numerical Case Study of a Bridge

An archetype bridge is considered and is designed with:
i) fixed base piers
ii) with piers supported on recking foundations

ii) with piers supported on rocking foundations

Analysis using 40 near-fault ground motions

Computed Response of a Bridge System

Archetype bridge considered – Tall Overpass

 \bullet

- 5 Spans
- Single column bents
- Cast in place box girder

- Column axial load ratio $N / f_c A_g = 0.1$
- Longitudinal steel ratio $\rho_l = 2\%$

Designs Using Rocking Foundations

 $\begin{array}{c} 39 \text{ ft} \\ 6 \text{ ft} \\ 50 \text{ ft} \\ \end{array} \xrightarrow{} D = 6 \text{ft} \\ \overrightarrow{D} = 24 \text{ ft} (4D) \end{array}$

Shallow foundation

Rocking Pile-Cap

Soil ultimate stress $\sigma_u = 0.08$ ksi

 $B = 18 \, ft \, (3D)$

$$FS_v = A\sigma_u / N = 5.4$$

Modeling of Bridge

OPENSEES 3-dimensional model

Monotonic Behavior – Individual Pier

Ground Motions Considered – Response Spectra , 2% Damping

Computed Response of Bridge

 Δ : total drift

 Δ_{f} : drift due to pier bending

z: soil settlement at foundation edge

Computed Bridge Response

Ground motion characteristics that may lead to overturn ?

Ground motions with strong pulses (especially low frequency) that result in significant nonlinear displacement demand

Rocking response of rigid block on rigid base to pulse-type excitation Zhang and Makris (2001)

Near Fault Ground Motions and their representation using Trigonometric Pulses

Conditions that may lead to overturn

Minimum a, at different T, that results in overturn ?

Conditions that may lead to overturn

Conditions that may lead to overturn

Probabilistic Performance Based Earthquake Evaluation (PBEE)

The PEER methodology and the framework of Mackie et al. (2008) was used for the PBEE comparison of the fixed base and the rocking designs.

- Ground Motion Intensity Measures [Sa (T₁)]
- Engineering Demand Parameters (e.g. Pier Drift)
- Damage in Bridge Components
- Repair Cost of Bridge System

PBEE Evaluation – Damage Models (Mackie et al. 2008)

PBEE Evaluation Foundation Damage Model

Normalized Edge Settlement z / z_{yield}

PBEE – Disaggregation of Cost

Fixed Base Bridge

PBEE – Disaggregation of Cost

Bridge with Shallow Foundations B=4D

