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1994 Northridge Earthquake Damage Data

Total Number of Bridges in 
Damage Data : 2209
Damage 

State
Number of 

Bridges
No 

Damage 1978

Minor 
Damage 84

Moderate 
Damage 94

Major 
Damage 47

Collapse 6

1st Level (Composite)

2nd Level

The entire sample represents a statistically 
homogeneous population of bridges.

Divided by
•Span (2 groups)
•Skew (3 groups)
•Soil (3 groups)

3rd Level

Divided by
•Span + Skew (6 groups) 
•Span + Soil (6 groups)
•Skew + Soil (9 groups)

4th Level
Divided by
•Span + Skew + Soil (18 groups) 

Classified

231 damaged



Fragility Curve (PGA, Retrofit)
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Network Modeling for Los Angeles (2003)

Traffic Light Speed Limit (MPH) Capacity (PCU)

65 2500

100035

Freeway ×

Highway ○

Total Number of Nodes =148
Total Number of Links  =231

Total Number of Nodes =148
Total Number of Links  =231

PCU : Passenger Car Unit



Probabilistic Bridge Repair/Restoration Model
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Days for Repair Completion
Damage State

Minimum Maximum
Minor 10 150

Moderate 20 200
Major 60 250

Collapse 75 300

Depends on Preparedness 
and Resourcefulness

(Shinozuka etc. 2003)



Effect of  Bridge Retrofit on System Restoration Curve
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Social Cost Avoided = Shaded Area

Social cost in hour * average 
hourly wages (~$21.77/h for 
Los Angeles in 2005 DOL) 

(Shinozuka’s Bridge Restoration Model, Low Residual Link Capacity Case)



Cost-effectiveness Evaluation Example

Benefit-Cost Retrofit
Total Social Cost Avoided ($Million) (1) 7,220

Total Bridge Restoration Cost Avoided($Million) (2) 86.7
Total Retrofit Cost($Million) (3) 1,665

Benefit/Cost Ratio in terms of Bridge Restoration Cost 
Avoided (4)=(2)/(3) 0.052

Benefit/Cost Ratio in terms of Social
Cost Avoided (5)=(1)/(3) 4.34

Total Benefit/Cost Ratio 
(6)=[(1)+(2)]/(3) 4.39

* Evaluation is based on
discount rate= 3%;   Low link residual capacity; 
remaining life of retrofitted bridges T =50 years.



Cost-effectiveness Evaluation Summary

Discount Rate Benefit/Cost 
Ratio

Cost-
Effectiveness

3% 4.39 Yes

5% 3.12 Yes

7% 2.36 Moderate
R=Benefit/Cost Ratio

No: R<1.5  Moderate:  1.5 <= R<2.5  Yes:R>=2.5



Conclusions

Carried out Multidisciplinary Analysis on  Cost-Effectiveness of Bridge 
Retrofit

Developed and Integrated Analytical Models Consisting of Modular
Models for Contributing Factors:

* Engineering Seismology:Probabilistic Scenario Earthquakes
* Structural Engineering:Fragility Curves
* Transportation System Analysis:Traffic Assignment
* Socio-Economic Analysis

Multilayer Monte Carlo Simulation Approach

Found that Bridge Retrofit is Cost-effective if We Take Social Cost into 
Consideration



PGA Distribution & Bridge Damage State (1)
-Elysian Park M7.1 (before retrofit)



PGA Distribution & Bridge Damage State (2)
-Elysian Park M7.1 (after retrofit)



Condensation OD

Nodes Tin Thiessen

Perpendicular
Bisector

New Total Number of Traffic Analysis Zones (TAZ) = 
148 (Original 2270)

New Total Number of Traffic Analysis Zones (TAZ) = 
148 (Original 2270)
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Economic Analysis (1)

Under any earthquake
Damage 

State
Best Estimate 
Damage Ratio

Range of Damage 
Ratios

Minor 0.03 0.01-0.03

Moderate 0.08 0.02-0.15

Major 0.25 0.10-0.40

Complete 1.00* 0.30-1.00

Bridge Restoration Cost 
(repair or replacement)

∑
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•=
N

i
ijiRPj kRCC

1
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Social Cost in Dollars

SCTSCSC cTC *= (HAZUS)

Social cost in hour  * average hourly 
wages(~$21.77/h for Los Angeles in 2005 DOL) 



Economic Analysis (2)

Expected Annual Benefit from Seismic Retrofit
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Future Study

• Improvement of Models for Each Contributing Factor, in 
particular, 
* System Restoration Process 
* Social Cost 

• Better Quantification of Uncertainty associated with Each 
Contributing Factors

• Risk Definitions Depending on Stakeholders
• Risk and Resilience Assessment under

– Flood
– High Wind
– Wild Fire
– Tsunami
– Man made hazards
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Probabilistic Assessment for Seismic Risk of Probabilistic Assessment for Seismic Risk of 
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Why Ports and Harbors ?Why Ports and Harbors ?

Important nodes of transportation networks
Provide shipping and distribution via water
Major centers of commerce
97% of international cargo through seaports

Down time results in severe economic loss

Vulnerable to earthquakes
located very near to faults
Built on fill or soft natural material (Liquefaction)

High risk of being damaged



Examples of Economic LossExamples of Economic Loss

Labor strike (Oakland, LA, Long Beach, 2002)
Estimated cost to U.S. : $ 19.4 billion (10days)

Typhoon (S.Korea, 2003)
collapsed 11 cranes : more than 1 year to recover



View of the Container TerminalView of the Container Terminal

View of Busan New Port 2-2 phase (S.Korea) 



Container Terminal SystemContainer Terminal System



Container Terminal SystemContainer Terminal System



Numerical SimulationNumerical Simulation
Modeling of the quay wall

FLAC (Itasca, 2005)
Dynamic analysis for a reference structure (PC1, Kobe)

Caisson

Back-filled gravel

Mound (gravel)

Replaced soil Alluvial soil

Reclaimed soil

Bed-rock * PC1 berth (Port Island, Kobe)



Numerical Simulation (4)Numerical Simulation (4)

Analysis results
* Displ. time histories of the upper seaside corner of the caisson

Mound (Gravel)

CaissonCaisson

Back-filled Gravel

Differentia
l 

Settlement
Horizontal 
displacement
Settlement

Loose sand 
foundation

Tilting Settlement of 
apron

A

• Field investigation : 2.55 to 2.80m in the horizontal direction
1.13 to 1.41m vertical settlements



Identification of uncertaintyIdentification of uncertainty

Considerable variability in seismic response 
Identical configuration, located at the same site,
with similar seismic intensity and similar soil conditions
> experienced different degrees of damage

(a) PL 13 berth                           (b) PL 12 berth

* Two identical caissons sitting next to each other showing different degrees of damage (Port Island, Kobe)



Spatial variation of Soil PropertiesSpatial variation of Soil Properties

Spatially variable soil properties
Soil properties : generally assumed deterministic
Representing spatial variation with random fields
Expressed using power spectral density function

random field simulation
: 2D non-Gaussian random field
: Shear Modulus of backfill soil is focused  



Random field simulationRandom field simulation
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Effects of Spatial VariationEffects of Spatial Variation
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Damage LevelDamage Level
Damage state proposed by PIANC(2001)

Based on Serviceability and Structural damage modes 

Level of Damage DegreeⅠ DegreeⅡ DegreeⅢ DegreeⅣ

Normalized
Residual

Horizontal displ.
~1.5% 1.5~5% 5~10% 10%~

Residual tilting ~3° 3~5 ° 5~8 ° 8 °~

Apron Differential
settlement ~0.1m N/A N/A N/A

Gravity 
Wall

Table 1. Proposed damage criteria for gravity quay walls

* Highest damage degree among different criteria is the 
final result of the evaluation. 



Fragility AnalysisFragility Analysis

Fragility curves obtained  from analysis
Comparison between no-spatial variation / variation 
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Damage LevelDamage Level
Damage state proposed by PIANC(2001)

Based on Serviceability and Structural damage modes 

Level of Damage DegreeⅠ DegreeⅡ DegreeⅢ DegreeⅣ

Differential 
Settlement ~0.1m 0.1-0.3m N/A N/A

Peak response 
of pile elastic

No 
residual 
deform

repairable Plastic 
hinge

Dike/
slope

Normalized
Residual

Horizontal displ.
~1.5% 1.5~5% 5~10% 10%~

Pile & 
Deck

Table. Proposed damage criteria for pile-supported wharf



Fragility Curves Fragility Curves 
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Risk Assessment Risk Assessment 
Overview of the Loss Estimation Methodology



System Fragility CurvesSystem Fragility Curves

Scenario
EQ /

Fragility
Curves

Generate
Samples of 
damaged 
systems

Terminal 
operation 
simulation

Develop 
system 

fragility

- System failure

crf
TEU

TEUTEU
>

−

intact

damagedintact

• : failure criteria 
(5, 10, 30, and 50%)

crf



Terminal Operation ModelTerminal Operation Model

Simulation Software : ARENA
discrete-event simulation : ship arrival, 

container movement, etc

Actual Operation Data  
15 container terminals’ operation records
- Ship’s arrival
- Lift Per Call (LPC, the num. of container boxes

handled at each ship)
- The number of assigned C/C
- Handling time per Lift



Container Terminal SystemContainer Terminal System
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A Movement to 
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Container Terminal SystemContainer Terminal System



Probabilistic Restoration CurvesProbabilistic Restoration Curves
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Decreased TEU Decreased TEU (based on Simulation)(based on Simulation)



Decreased Container TEUDecreased Container TEU
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Thank you


	Condensation OD

