Performance-Based Seismic Assessment of Skewed Bridges An update

by Ertugrul Taciroglu, Payman Khalili-Tehrani, UCLA Farzin Zareian, Peyman Kaviani, UCI

PEER Transportation Systems Research Program Coordination Meeting at UC-Berkeley, August 25, 2009

Performance-Based Seismic Assessment of Skewed Bridges An update collaborators Anoosh Shamsabadi, PhD, PE Senior Bridge Engineer Office of Earthquake Engineering, Caltrans Majid Sarraf, PhD, PE Senior Project Manager/Seismic Specialist PTG, Bridge and Tunnel Division, Parsons PEER Transportation Systems Research Program

Coordination Meeting at UC-Berkeley, August 25, 2009

Outline

- 1. Project overview FZ
- 2. Matrix of skew bridges to be assessed FZ
- 3. Modeling skew abutment response ET
- 4. Discussion

Project Overview

Develop Experimentally Validated Macro-element Models for Skew Abutments

Lead, UCLA

Lead, UCI

Adapt Macroelement Models for Biaxial Pile/Foundation-Soil Interaction

Develop a Database of Simulation Models for Skew Bridges

Develop/Select Sets of Representative Ground Motions

Quantify the Sensitivity of Skew Bridge Response and Damage Metrics to Key Input Parameters

6

Update Caltrans Seismic Design Criteria for Skew-Angled Bridges

Defining a bridge analysis matrix

- Need recently designed bridges
- Box-girder deck and seat-type abutment
- Located at a highly seismic region
- Availability of as-built structural drawings

Skewed Bridge Model Matrix

	Column		Symmetric			Non-symmetric					
	Height	00°	15°	30°	45°	60°	00°	15°	30°	45°	60°
2 Span Single Column	Lower										
z Span Single Column	Upper										
2 Span Multiple Column	Lower										
2 Span Multiple Column	Upper										
2 Span Single Column	Lower										
5 Span Single Column	Upper										
2 Span Multiple Column	Lower										
5 Span multiple Column	Upper										
Single Span											

Bridge modeled and analysis has started

Bridge in modeling phase

No action yet

Existing Bridges as Seed Models

Bridge Type	Bridge No.	Structure Name	Bridge Length (m)	Width (m)	Year Built
2 Span Single Column	29 0315K	JACKTONE-SB 99 ON-RAMP SEPARAT	67.2	8.3	2001
2 Span Multiple Column	55 0938	LA VETA AVENUE OC	91.4	23	2001
3 Span Single Column	29 0318	JACK TONE ROAD OH	127.5	23.5	2001
3 Span Multiple Column	55 0835H	E91-5 HOV CONNECTOR OH	141	23.6	2000

2 Span Single Column Jacktone – SB 99

2 Span Multiple Column La Veta Ave. / CA-55

Rules for varying bridge structural parameters from seed models

Development of Macroelements for Skew Abutments

torsionally stiff

torsionally stiff

torsionally stiff

flexible

torsionally stiff

flexible

Past Work (Caltrans) Model for Zero-Skew

Modeling Approaches

- 1. Limit equilibrium (LSH) models
- 2. Finite element models
- 3. Simplified (HFD) models

+ UCD test by Romstad et al. (1995) (cohesive)

- + UCD test by Romstad et al. (1995) (cohesive)
- + UCLA test by Stewart et al. (2007) (silty sand)

- + UCD test by Romstad et al. (1995) (cohesive)
- + UCLA test by Stewart et al. (2007) (silty sand)
- + BYU tests by Rollins et al. (circa 2003) (clean & silty sands, gravel)

Height-dependence is explicitly modeled

- Height-dependence is explicitly modeled
- Suitable for massive computation

- Height-dependence is explicitly modeled
- Suitable for massive computation
- Cited in upcoming Caltrans SDC

Recent Work (Caltrans & PEER) Physically parameterized HFD curves

EHFD Equation

 a_r, b_r had been shown to be height-independent parameters.

 a_{r}

We decompose them further as in

$$=\frac{1}{\beta}(\eta-1)\alpha \qquad b_r = \frac{1}{\beta}(\eta-2)$$

where
$$\alpha = \frac{F_{ult}}{\hat{H}^n}$$
 $\beta = \frac{y_{max}}{\hat{H}}$ $\eta = \frac{y_{max}}{y_{50}}$

Parametric Studies via LSH

Matrix of soil parameters considered in parametric studies

Soil unit weight: $\gamma \in \{14 \sim 24\}$ kPa $\epsilon_{50} \in \{0.0015 \sim 0.0075\}$ Soil failure ratio: $R_f = 0.96$ Interface Adhesion: $c_a = 0.65c$ Interface friction: $\delta = 2/3\phi$

3-equation for Wall Deflection at Capacity $\beta = \frac{y_{ult}}{\hat{H}} \equiv f(\phi, \varepsilon_{50}) \quad \text{Running LSH for } \phi - \varepsilon_{50} \text{ values and fitting } \beta = \beta_1 (\tan \phi)^{\beta_2} + \beta_3$ $\beta = [1703 - 683.4(\tan \phi)^{1.23}]\varepsilon_{50}$ NLSM (Trust Region) # Residual = $\frac{(value)_{LSH} - (value)_{approximated}}{(value)_{LSH}} \times 100$ β Residual (%) x 10⁻³ 7 6 0.5 5 20 4 3 -0.5 2 0 5 10 15 20 25 30 35 40

Friction Angle ()

α -equation for Wall Capacity

 $\alpha = \frac{F_u}{\hat{H}^n} \equiv f(\phi, c, \gamma)$

Linear dependence on γ in agreement with Bell's equation.

 $\alpha = slope \times \gamma + intercept$

 $F_{ult} = \frac{1}{2}\gamma K_p H^2 + 2c\sqrt{K_p}H$

 $\alpha = \begin{cases} 0.50\gamma + 2.63c & \text{if } \phi = 0\\ [5.62(\tan\phi)^2 + 0.53]\gamma + [10.58(\tan\phi)^{1.79} + 2.86]c & \text{otherwise} \end{cases}$

n-equation for Height Effect on Wall Capacity

 $F_{ult} = \frac{1}{2} \gamma K_p H^2 + 2c \sqrt{K_p} H \quad \Longrightarrow \quad 1 < n \le 2$

 $n \equiv f(c, \phi, \mathbf{N})$

if c = 0 $n = \begin{cases} \frac{0.91(\tan\phi)^{1.2} + 1.49}{\sqrt{2}} + 0.90 \end{cases}$

Otherwise

η -equation and its accuracy

$$\eta = \frac{\mathcal{Y}_{ult}}{\mathcal{Y}_{50}} \equiv f(\phi, c) \cong f(\phi)$$

Affects backbone curve shape, especially at small displacements.

Verification of EHFD Equations

Backwall System	C (kPa)	φ°	γ (kN/m³)	ε_{50}	H (m)	$(F_{ult})_{LSH}$ (kN/m)	$(y_{max})_{LSH}$ (cm)
(1)	0	38	22.0	0.0030	1.5	212.19	5.68
(2)	85	0	16.5	0.0065	1.8	432.18	19.74
(3)	55	25	18.0	0.0045	2.0	727.29	12.79
(4)	20	40	20.0	0.0035	1.1	343.98	4.54

8

	Parameters										
Experiments			Backfill So	LSH							
	c (kPa)	φ°	γ (kN/m ³)	ε_{50}	ν	δ°	c _a (kPa)	R_f			
BYU Clean Sand	3.83	39.0	18.4	0.0020	0.30	30.0	2.49	0.98			
BYU Silty Sand	31.0	27.0	19.2	0.0030	0.35	13.0	20.15	0.97			
RPI Dense Sand	0.0	39.0	16.2	0.0035	0.35	39.0	0.00	0.95			

	Parameters										
Experiments			Backfill So	LSH							
	c (kPa)	φ°	γ (kN/m ³)	ε_{50}	ν	δ°	c _a (kPa)	R_f			
BYU Clean Sand	3.83	39.0	18.4	0.0020	0.30	30.0	2.49	0.98			
BYU Silty Sand	31.0	27.0	19.2	0.0030	0.35	13.0	20.15	0.97			
RPI Dense Sand	0.0	39.0	16.2	0.0035	0.35	39.0	0.00	0.95			

wall friction factor $f = 0.64 \left(\delta / \phi \right) + 0.56$

Experiments	Parameters									
	Backfill Soil						LSH			
	c (kPa)	φ°	γ (kN/m ³)	ε_{50}	ν	δ°	c _a (kPa)	R_f		
BYU Clean Sand	3.83	39.0	18.4	0.0020	0.30	30.0	2.49	0.98		
BYU Silty Sand	31.0	27.0	19.2	0.0030	0.35	13.0	20.15	0.97		
RPI Dense Sand	0.0	39.0	16.2	0.0035	0.35	39.0	0.00	0.95		

wall friction factor $f = 0.64 (\delta/\phi) + 0.56$

	Parameters									
Experiments			Backfill So	LSH						
	c (kPa)	φ°	γ (kN/m ³)	ε_{50}	ν	δ°	c _a (kPa)	R_f		
BYU Clean Sand	3.83	39.0	18.4	0.0020	0.30	30.0	2.49	0.98		
BYU Silty Sand	31.0	27.0	19.2	0.0030	0.35	13.0	20.15	0.97		
RPI Dense Sand	0.0	39.0	16.2	0.0035	0.35	39.0	0.00	0.95		

wall friction factor $f = 0.64 (\delta/\phi) + 0.56$

	Parameters										
Experiments			Backfill So	LSH							
	c (kPa)	φ°	γ (kN/m ³)	ε_{50}	ν	δ°	c_a (kPa)	R_f			
BYU Clean Sand	3.83	39.0	18.4	0.0020	0.30	30.0	2.49	0.98			
BYU Silty Sand	31.0	27.0	19.2	0.0030	0.35	13.0	20.15	0.97			
RPI Dense Sand	0.0	39.0	16.2	0.0035	0.35	39.0	0.00	0.95			

wall friction factor $f = 0.64 \left(\frac{\delta}{\phi} \right) + 0.56$

17

Khalili-Tehrani P, Shamsabadi A, Stewart JP, Taciroglu E (2009). Physically parameterized backbone curves for passive resistance of homogeneous backfills, ASCE Journal of Geotechnical & Geoenv. Engineering, (coming soon).

Extension to Skew Abutments

UCLA Straight Abutment as Tested

quo vadis?

1. Complete the development of bridge models

2. Obtain the ground motion suite

3. Upcoming skew test at UCLA

4. Develop a macroelement for a rotating backwall

5. Incorporate new abutment macroelements into the bridge matrix

6. Plan the hybrid test for following year

discussion