Mobile Millennium Using Smartphones as Traffic Sensors

Dan Work and Alex Bayen

Systems Engineering, Civil and Environmental Engineering, UC Berkeley Intelligent Infrastructure, Center for Information Technology Research in the Interest of Society (CITIRIS)

- Motivation
- System architecture for GPS-based traffic flow monitoring
- Velocity field reconstruction
- Towards disaster preparation, response, and recovery

- Motivation
- System architecture for GPS-based traffic flow monitoring
- Velocity field reconstruction
- Towards disaster preparation, response, and recovery

New platform for sensing civil infrastructure

Arrival of the mobile internet - The next big thing?

- Mobile devices outnumber PCs 5:1
- 1. 4 million devices per day (Nokia Q2 2008)
- Redefining the mobile market:
 Google, Apple, Nokia,
 Microsoft, Intel, IBM, etc.
- Open source computing:
 Symbian Foundation, Android, Linux

Smart phones open the door for

- Location based services
- Context awareness
- Mobility tracking
- Sensing and communication suite

 GSM, GPRS, WiFi, bluetooth,
 Infrared, GPS, accelerometer,
 light sensor, camera, microphone

Field Operational Test: Mobile Millennium

- Partnership between UC Berkeley, Nokia, Navteq Caltrans, and US DOT SafeTrip 21 initiative
- Participating users download Mobile Millennium Traffic Pilot (available at *traffic.berkeley.edu*) on a GPS and java enabled phone
- Phones send and receive live information on map application
- Project duration at least 6 months
- Mobile Millennium is a precursor to a mainstream product
- Launch
 - *Mobile Millennium* was launched on November **10th 2009** from the UC **Berkeley campus**

- Motivation
- System architecture for GPS-based traffic flow monitoring
- Velocity field reconstruction
- Towards disaster preparation, response, and recovery

Managing data quality through spatial sampling

Virtual trip lines

- Virtual trip lines are geographical markers which trigger a position and speed update whenever a probe vehicle passes.
- VTLs provide location awareness -- critical for sensing.
- Framework for managing data quality and privacy.

Cyber physical system architecture

info distribution

Sensing

- Crowd sourcing; millions of mobile devices as new sources for data
- Sensor motion tightly coupled with underlying physical system
- Communication
 - Existing cell phone infrastructure to collect raw data and receive traffic information
- Data assimilation
 - Real-time, online traffic estimation
- Privacy management
 - Encrypted transactions
 - Client authentication
 - Data anonymization

- Motivation
- System architecture for GPS-based traffic flow monitoring
- Velocity field reconstruction
- Towards disaster preparation, response and recovery

Mathematical formulation of the problem

UC Berkeley

Governing equation

 First order hyperbolic conservation law – Lighthill Whitham Richards PDE:

 $\frac{\partial \rho}{\partial t} + \frac{\partial q(\rho)}{\partial x} = 0 \qquad \begin{array}{l} \mbox{Initial condition:} \\ \rho(x,0) = \rho_0(x) \end{array}$

- Expresses conservation of density of vehicles on the road.
- Shock (queue) capturing
- Can be transformed into a stochastic velocity evolution equation:

$$\theta_{k+1} = F_k(\theta_k) + w_k$$

 Measurements are modeled with additive noise

$$y_k^{(i)} = H_k^{(i)}\theta_k^{(i)} + \epsilon_k^{(i)}$$

- Ensemble Kalman filter
 - Model forecast
 - Velocity evolution is nonlinear, non-differentiable
 - Monte Carlo method to approximate the mean and error covariance
 - Measurement update
 - Kalman gain computed using the ensemble error covariance

[Lighthill-Whitham, 1955; Richards, 1956; Work, Tossavainen, Jacobson, Bayen 2009]

UC Berkeley

Highway Field Experiment: Mobile Century

Prototype System

- Run Feb. 8, 2008
- Multi-lane highway with heavy morning and evening congestion
- Ground truth: Loop detectors, HD film crew on bridges.
- Rich data set for future traffic modelling and estimation research

Revealing the previously unobservable

5 car pile up accident (not Mobile Century vehicles)

- Captured in real time
- Delay broadcast to the system in less than one minute

Estimate from inductive loops

Arterial Experiment: New York City

New York City Demonstration

- 3 mile loop, 20 cars with cell phones
- Nov 17, 2008; 8:00-11:00am
- Coincides with the 2008 Intelligent Transportation Systems World Congress
- Ground truth: HD video cameras collect actual travel times of vehicles
- Objectives
 - Collecting data where there is no existing sensing coverage
 - Modelling arterial traffic without using detailed timing information from the 30+ signals
 - Defining usable metrics for arterial congestion
 - Study GPS performance in urban areas

- Motivation
- System architecture for GPS-based traffic flow monitoring
- Velocity field reconstruction
- Towards disaster preparation, response, and recovery

Seismic preparation, response, and recovery

• Preparation

- Ubiquitous sensing. We are collecting data where there currently is none.
- Data is useful for understanding and modeling traffic patterns on surface streets
- Invaluable planning tool
- Response
 - Mobile internet and Web 2.0 have tremendous potential as an information dissemination platform
 - How to leverage this potential?
 - After catastrophic event, will the monitoring infrastructure survive?
 - 5.6 magnitude earthquake in San Jose towers survived [SF Chronicle, 2007]
 - Networks fail because of congestion; Emergency systems need to be centered around SMS
 - Backup power mandate (FCC)
- Recovery
 - No need to deploy dedicated infrastructure. The system can come online as soon as the communication infrastructure is available

Mobile Millennium Using Smartphones as Traffic Sensors

Dan Work and Alex Bayen

Systems Engineering, Civil and Environmental Engineering, UC Berkeley Intelligent Infrastructure, Center for Information Technology Research in the Interest of Society (CITIRIS)

california center for innovative transportati