Incorporation of Seismic Considerations in Bridge Management Systems

Samer Madanat and Jerome Mayet PEER Workshop on Transportation Networks, March 2009

Introduction

- Research establishes a link between two existing fields
- Bridge management
 - optimal maintenance, repair and replacement policies
 - focus: gradual deterioration over time and
- Earthquake risk analysis

Seismic risk analysis

- Random var. A
 - for each quake
 - PDF $f_A(a)$
 - CDF $F_A(a)$

- Hazard curve
 - USGS data for Berkeley(94702)

Seismic risk analysis

Fragility curves

- P[D>d /a]
- HAZUS curves
- extensive damage
- complete damage

Classifications

- curves available for bridge classes
- HAZUS (12 classes)
- very rough classes

Probability of destruction

- Our model
 - only considers 'destruction'
 - level of damage which implies replacement by a new bridge.
 - order of magnitude
 - formula applied for 12 classes of HAZUS
 - 1% is reasonable for Berkeley
 - independent of deterioration state?
 - ignores correlation across bridges

Bridge management concepts

- System description
 - deterioration state i
 - 1 = brand new to 4 = rusted steel, etc.
 - action a
 - maintenance, repair, replacement...
 - Markov transition probability P_{aij}
 - Annual probability of moving from i to j given action a
 - w_{ai}: fraction of system in state i and receiving action a

Bridge management concepts

Costs

- u_{ai} user costs : delays, vehicle wear and tear...
- c_{ai} agency costs, depending on actions
- budget constraint
 - maximum allowed expenditure
 - excludes facilities destroyed by earthquakes

Decision making model

Formulation of infinite horizon model

$$\begin{aligned} w_{ai} \geq 0, & \sum_{a} \sum_{i} w_{ai} = 1 \\ \sum_{a} \sum_{i} w_{ai}.(c_{ai} + u_{ai}) & subject \ to & \sum_{a} \sum_{i} w_{ai}.P_{aij} = \sum_{a} w_{aj} \\ \frac{1}{1 - P} \sum_{a} \sum_{i < = 4} w_{ai}.c_{ai} < B_{\max} \end{aligned}$$

- Key concepts
 - minimization of cost per year
 - steady state

Transition matrices

- probabilities w/o earthquake
- 4 deterioration states
- 3 possible actions

Earthquake

- 5th state = destruction
- forced reconstruction

	do nothing	g		
	1	2	3	4
1	0.7	0.3		
2		0.9	0.1	
3			0.5	0.5
4				1
	maintena	nce		
	1	2	3	4
1	0.8	0.2		
2		0.95	0.05	
3			0.7	0.3
4				1
	reconstruc			
	1	2	3	4
1	1	0	0	0
2	1	0	0	0
3	1	0	0	0
4	1	0	0	0

- Agency costs
 - maintenance cheap
 - reconstruction expensive
- User costs
 - depends on state
 - detour if reconstruction
 - cost of destruction

Total	d	m	r
1	0	5	200
2	5	10	200
3	15	20	200
4	30	35	200
5	400	400	400
Agency	d	m	r
1	0	5	150
2	0	5	150
3	0	5	150
4	0	5	150
5	150	150	150
Users	d	m	r
1	0	0	50
2	5	5	50
3	15	15	50
4	30	30	50
5	250	250	250

Case

- 0% vs. 1% destruction
- no budget constraint
- deterministic policy

Observation

- some difference in state distribution
- little importance for policy

NO EARTH	HQUAKE	Agency cost	9.8
NO BUDG	ET CONSTRAI	Total cost	16.2
Wai	d	m	r
1	0.0%	17.9%	0.0%
2	0.0%	71.4%	0.0%
3	7.1%	0.0%	0.0%
4	0.0%	0.0%	3.6%
5	0.0%	0.0%	0.0%
1% DESTE	RUCTION	Agency cost	9.5
NO BUDG	ET CONSTRAI	Total cost	19.5
Wai	d	m	r
Wai 1	d 0.0%	m 20.6%	r 0.0%
1	0.0%	20.6%	0.0%
1 2	0.0% 0.0%	20.6% 68.4%	0.0% 0.0%

Case

- 0% vs. 1% destruction
- budget < 9</p>
- randomized policy for state 4

Observation

- higher fraction of facilities in state 1
- higher reconstruct.
 fraction in state 4

0% DEST	RUCTION	Budget	9
BUDGET -		Total cost	17.0
Wai	d	m	r
1	12.0%	0.0%	0.0%
2	0.0%	72.0%	0.0%
3	7.2%	0.0%	0.0%
4	5.2%	0.0%	3.6%
5	0.0%	0.0%	0.0%
1% DEST	RUCTION	Budget	9
1% DEST		Budget Total cost	
BUDGET	< 9	Total cost	19.7
BUDGET ·	< 9 d	Total cost	19.7 r
Wai 1	< 9 d 14.6%	m 0.0%	19.7 r 0.0%
Wai 1 2	< 9 d 14.6% 0.0%	Total cost m 0.0% 72.7%	19.7 r 0.0% 0.0%

Case

- variable vs. 1% destruction
- variable among the states : 0.5% to 2%
- budget < 9
- Observation
 - significant impact on state distributions and optimal policy

1% DESTE	RUCTION	Budget	9
BUDGET <	< 9	Total cost	19.7
Wai	d	m	r
1	14.6%	0.0%	0.0%
2	0.0%	72.7%	0.0%
3	7.1%	0.0%	0.0%
4	1.1%	0.0%	3.5%
5	0.0%	0.0%	1.0%
VAR % DE	STR.	Budget	9
VAR % DE BUDGET <		Budget Total cost	-
BUDGET <	< 9	Total cost	19.6
BUDGET <	< 9 d	Total cost	19.6 r
BUDGET < Wai 1	d 14.6%	Total cost m 0.0%	19.6 r 0.0%
BUDGET < Wai 1 2	d 14.6% 0.0%	Total cost m 0.0% 73.5%	19.6 r 0.0% 0.0%

Conclusions

- Significant impact of earthquakes
 - on state distribution
 - on policies if budget constraints
- Need for more precise bridge classes
 - variable % of destruction among states may be important
- Extension must account for correlation between destructions!