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What is a Bayesian Network?

� A BN is a probabilistic graphical 
model that encodes a set of random 
variables and their probabilistic 
(in)dependencies.

� A BN has the following elements: 
A set of variables (nodes) and 
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directed links

� Each variable has finite set of mutually 
exclusive states

� Nodes/links form a directed acyclic 
graph

� To each variable we attach a CPT
representing discrete probabilities
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Information Updating
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Calculations in BNs
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Inference algorithms are available for 

efficiently performing computations in BNs



Advantages/Shortcomings of BN

� Advantages:

� Graphical, powerful, efficient

� Tool for end-users (intuitive)

� Can account for sources of 
uncertainty

� Allows information updating

� Shortcomings:

� Can be computationally 

demanding for infrastructure 

systems having many dependent 

RVs

Discretization of continuous � Allows information updating

� Can model multiple hazards & 
interdependencies

� Can model distributed & 
interacting systems

� Can identify critical
component/cut sets in a system

� Includes utility and decision 
nodes (solve decision problems)

� Discretization of continuous 

random variables necessary

� exponential growth with 

number of states

Trade-offs!

• transparency in modeling (verifiability)

• computational complexity

• detail of modeling



Model of Ground Motion Intensity

ML

),,()ln( iii RMfS X=

ML

S1 Si
Sn

R1 Ri
Rn

... ...

XnXi
X1



Model of Ground Motion Intensity

ML εm

miii RMfS ε+= ),,()ln( X

ML

S1 Si
Sn

R1 Ri
Rn

... ...

XnXi
X1



Model of Ground Motion Intensity

ML εm

irmiii RMfS ,),,()ln( εε ++= X

ML

S1 Si
Sn

R1 Ri
Rn

... ...

εr1 εri εrn
... ...

XnXi
X1



Model of Ground Motion Intensity

ML εm

irmiii RMfS ,),,()ln( εε ++= X

ML

S1 Si
Sn

R1 Ri
Rn

... ...

εr1 εri εrn
... ...

XnXi
X1

.  .  .

���, �
 



Model of Ground Motion Intensity

),()ln( ii RMfS = ),,()ln( iii RMfS X= ε+= ),,()ln( iii RMfS X
irmiii RMfS ,),,()ln( εε ++= X

ML εmML

S1 Si
Sn

R1 Ri
Rn

... ...

εr1 εri εrn
... ...

XnXi
X1

.  .  .

Highly dependent variables → 

computationally demanding



Model of Ground Motion Intensity

),()ln( ii RMfS = ),,()ln( iii RMfS X= ε+= ),,()ln( iii RMfS X
irmiii RMfS ,),,()ln( εε ++= X

ML εmML

S1 Si
Sn

R1 Ri
Rn

... ...

εr1 εri εrn
... ...

XnXi
X1

.  .  .

Highly dependent variables → 

computationally demanding

Requires approximation using 

principle component analysis 
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Model of Ground Motion Intensity
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Component Performance
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Classic System Analysis � BN 

framework for system connectivity

Component 1 (s1)

…

Component n (sn)

System State 

(S)� = ���1, … ��
 

Five different formulations for modeling system connectivity within � Five different formulations for modeling system connectivity within 
the context of BN

� Focus here on binary components/system

� Currently expanding to consider multi-state problems

� Example system:
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(1) Naïve Formulation
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� Advantages: 

� Easy to formulate

� Disadvantages:

� Computationally inefficient

� Poor readability

� Difficult for third-party 
interaction



(2) Minimum Link Set Formulation
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� Advantages: 
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� Difficult for third-party 
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(3) Explicit Connectivity Formulation

Comp 1 Comp 2 Comp 3

A  →  B

Comp 4

B  → C
Source 

(A)

Comp 5

Comp 4

Sink (C)

A  → C

� Advantages: 

� Intuitive (better for third-party 

interaction) 

� Smaller CPTs than Naïve

� Disadvantages:

� not systematic
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(4) Minimum Cut Set Formulation
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MCS MCS
MCS

{1,4}

MCS

{2,3,4}

MCS

{1,5}

System

MCS

{2,3,5}

� Advantages: 

� Systematic

� More efficient (smaller CPTs) 
than Naïve formulation

� Disadvantages:

� Difficult readability

� Difficult for third-party 
interaction

MCS: {(1,4),(2,3,4),(1,5),(2,3,5)}
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(5) EDC Formulation

Comp 1

Comp 4

A  →  B

(bar)
Source Sink (C)A  → C 

C4, C5

Comp 5

Comp 2 Comp 3

Source 

(A)
B  → C

(bar)

Sink (C)A  → C 

(bar)

C2, C3

� Advantages: 

� Can be more efficient (for systems 

with small number of MCSs)

� Disadvantages:

� Less intuitive 

� Not systematic
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Example & Demonstration: 

Transportation System

Hospital

B

A
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2 38.1 12

3 30.9 5

4 39.2 19

5 35.5 7

6 33.6 3
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3km
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Illustrative Example

� Live demonstration…



Future Work

� Improve and expand seismic demand model
� Multiple seismic sources

� Include other hazards: fault rupture, liquefaction

� Identify optimal modeling approaches
� Inclusion of spatial correlation� Inclusion of spatial correlation

� Sensitivity to fragility function & evidence

� System connectivity formulation

� Multi-state components and system

� Expand the BN
� Incorporate utility/decision nodes

� Develop a prototype DSS
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