PBEE evaluation of a bridge with liquefaction hazards

Pedro Arduino Steven Kramer HyungSuk Shin

University of Washington

Introduction (earthquake bridge damage)

Introduction (earthquake bridge damage)

•Estimate bridge performance hazards considering several sources of uncertainties using the PEER PBEE framework

Outline

PEER PBEE framework

- Target bridge structure and modeling
- Input Motions
- Bridge response
- Uncertainty in EDP
- Foundation Damage and loss
- Bridge damage and loss

Outline

PEER PBEE framework

- Target bridge structure and modeling
- Input Motions
- Bridge response
- Uncertainty in EDP
- Foundation Damage and loss
- Bridge damage and loss

PEER Performance-Based Earthquake Engineering

PEER Performance-Based Earthquake Engineering

PEER Performance-Based Earthquake Engineering

Outline

PEER PBEE framework

- Target bridge structure and modeling
- Input Motions
- Bridge response
- Uncertainty in EDP
- Foundation Damage and loss
- Bridge damage and loss

Target Structure = Bridge system on liquefiable soil

- Five-span bridge
- Pile group foundation
- Liquefiable soil / various layers

Target Bridge System

Numerical modeling of target bridge system in OpenSees

Numerical modeling of target bridge system in OpenSees

Bridge Idealization

OpenSees model

Outline

PEER PBEE framework
Target bridge structure and modeling
Input Motions
Bridge response
Uncertainty in EDP
Foundation Damage and loss
Bridge damage and loss

Input Motions and Intensity Measures (IMs)

- 4 hazards of input motions (I-880 bridge site, near-fault)
- Return periods (15, 72,475, 2475 years)
- 10 motions for each hazard

IM	Definition	Unit
Peak Ground Acceleration (PGA)	max a(t)	g
Peak Ground Velocity (PGV)	max v(t)	m/s
Arias Intensity (I _a)	$\frac{\pi}{2g}\int_0^{T_a} \left[a\left(t\right)\right]^2 dt$	cm/s
Cumulative Absolute Velocity (CAV ₅)	$\int_{0}^{T_{d}} \left\langle \chi \right\rangle a(t) dt$	cm/s
Spectral Acceleration (Sa(T))	$Sa(T_1)$	g
Cordova Predictor	$Sa(T_1)\sqrt{\frac{Sa(2T_1)}{Sa(T_1)}}$	g

 T_d = duration of earthquake motion

 $\langle \chi \rangle = 0$, if $|a(t)| < 5 \text{ cm/s}^2$ and $\langle \chi \rangle = 1$, if $|a(t)| \ge 5 \text{ cm/s}^2$

- Motions scaled to a constant value of a target magnitude corrected PGA
- Remove free-surface effect (Proshake)

System Response Soil Strain Profile during shaking

System Response Soil Strain Profile during shaking

System Response

- 0

System response

System response

System response

(b) bridge deck-abutment-soil

System Response

Abutment spring (bearing pad + break-off wall)

Initial gap (10cm) 2000 2000 т right bearing pad spring 1000 1000 -1000 abutment soil resistance (kN) horizontal force (kN) -2000 -1000 -3000 -2000 -4000 contact to abut. wall -5000 -3000 -6000 Abut. wall shear-off -4000 -7000 -5000 -1 -0.5 0.5 0 1 horizontal displacement (m)

Passive earth pressure spring

EDP groups in bridge system

EDP	EDP	EDP						
group	description	symbol	0.14 0 pile 0- res 0.12 0 pile 1- res 0.12					
column	drift ratio	C1 _[drift,max]						
		C2 _[drift,max]						
		C3 _[drift,max]						
		C4 _[drift,max]						
pile cap	pile cap drift	$P0_{[drift,res]}$	0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4					
	(displacement)	$P1_{[drift,res]}$						
		$P2_{[drift,res]}$	0.12 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0					
		$P3_{[drift,res]}$						
		$P4_{[drift,res]}$						
		P5 _[drift,res]						
abutment	gap between	$EJ1_{[gap, res]}$						
exp. joint	deck and abutment	EJ2[gap,res]	$ \mathcal{D}$ \mathcal{D} D					
abutment	backwall	BW1 _[dx,max]	res. pile cap movement res. pile cap movement					
backwall	displacement	BW2 _[dx,max]						
abutment	bridge approach	BA1 _[dy,res]	○ pile 4- res 0.6 ○ pile 5- res					
approach	vert. off-set	BA2 _[dy,res]						
bearing	bearing pad	BP1 _[dx,max]						
pad	displacement	BP2 _[dx,max]						
embankment	lateral disp.	$E1_{[dx, res]}$						
slope		$E2_{[dx,res]}$	0 0.5 1 1.5 0 0.5 1 1.5 2					
erical modeling allows evaluation of								

Numerical modeling allows evaluation of median values for each EDP and corresponding uncertainties.

Residual pile cap disp. (m)

Outline

PEER PBEE framework
Target bridge structure and modeling
Input Motions
Bridge response
Uncertainty in EDP
Foundation Damage and loss
Bridge damage and loss

Uncertainties in EDP estimation

Record-to-record uncertainty (EDP-IM relationship)

Record-to-record uncertainty (IM efficiency)

Why is the IM efficiency important?

Parametric uncertainty

Sensitivity analysis

Parameters	used COV	
Shear modulus, G	0.4	
undrained shear strength, c	0.3	
friction angle, ϕ	0.1	
contraction parameter, contrac1	0.2	
py spring (stiffness, K_1)	0.4	
py spring (pult): clay	0.3	
py spring (pult): sand	0.1	
abutment earth spring (stiffness, K_2)	0.4	
break-off wall capacity	0.1	
bearing pad (stiffness, K_3)	0.05	
Shear wave velocity, V_s	0.2	
SPT resistance	0.3	
density	0.08	

FOSM analysis

$$\sigma_Y^2 \approx \sum_{i=1}^N \sigma_{X_i}^2 \left(\frac{\partial g}{\partial X_i}\right)^2 + \sum_{i=1}^N \sum_{j\neq i}^N \rho_{X_i,X_j} \sigma_{X_i} \sigma_{X_j} \frac{\partial g}{\partial X_i} \frac{\partial g}{\partial X_j}$$

XX

Spatial variability uncertainty

After Phoon and Kulhawy (1999)

Spatial variability uncertainty

Gaussian stochastic field (mean + residual) - 🕅

Total uncertainty in EDP estimation

$$\sigma_{\ln EDP|IM,total} = \sqrt{\sigma_{\ln EDP|IM,record}^2 + \sigma_{\ln EDP|IM,parameter}^2 + \sigma_{\ln EDP|IM,spatial}^2 + \sigma_{\ln EDP|IM,spatial}$$

EDP	efficient	record-to-record	parametric	spatial	total EDP	
symbol	IM	uncertainty	uncertainty	uncertainty	uncertainty	
C1 _[drift,max]	Cordova(T=0.5)	0.327 (84%)	0.134 (14%)	0.048 (2%)	0.356	
$C2_{[drift,max]}$	PGV	0.401~(98%)	0.031 (1%)	0.044 (1%)	0.404	
C3 _[drift,max]	Sa(T=1.0)	0.432~(99%)	0.123 (1%)	0.018(0%)	0.434	
C4 _[drift,max]	PGV	0.311~(95%)	0.104 (2%)	0.050(3%)	0.311	
P0 _[dx,res]	CAV_5	1.275 (99%)	0.068 (1%)	$0.062\ (\ 0\%)$	1.278	
$P1_{[dx, res]}$	I_a	1.026~(91%)	0.283 (7%)	0.141 (8%)	1.073	
P2 _[dx,res]	Sa(T=0.5)	1.266 (89%)	0.384 (8%)	0.213(3%)	1.340	
P3 _[dx,res]	CAV_5	0.673~(95%)	0.119 (4%)	0.087(1%)	0.689	
P4 _[dx,res]	I_a	0.761~(98%)	0.087(1%)	0.064 (1%)	0.769	
$P5_{[dx,res]}$	CAV_5	0.687~(97%)	0.105 (2%)	0.056 (1%)	0.697	
	l					
		90-95%	5% 5-10%			

EDP hazard

Importance of IM efficiency

Outline

PEER PBEE framework
Target bridge structure and modeling
Input Motions
Bridge response
Uncertainty in EDP
Foundation Damage and loss
Bridge damage and loss

Integration of Uncertainties through PBEE Framework

EDP = Pile cap 1 horizontal displacement

IM hazard curve

EDP|IM relationship

EDP hazard curve

DM fragility curves

DM hazard curve

Irve DM fragility curve

DV hazard curve

····· ?

$$\lambda_{dm(j)} = \sum_{i=1}^{N_{EDP}} P[DM > dm(j) | edp(i)] \Delta \lambda_{edp(i)}$$

$$\lambda_{dv(k)} = \sum_{k=1}^{N_{DM}} \sum_{j=1}^{N_{EDP}} P[DV > dv(k) | dm(j)] P[DM = dm(k) | edp(j)] \Delta\lambda_{edp(j)}$$

$$\lambda_{dm(j)} = \sum_{i=1}^{N_{EDP}} P[DM > dm(j) | edp(i)] \Delta \lambda_{edp(i)}$$

$$\lambda_{dv(k)} = \sum_{k=1}^{N_{DM}} \sum_{j=1}^{N_{EDP}} P[DV > dv(k) | dm(j)] P[DM = dm(k) | edp(j)] \Delta \lambda_{edp(j)}$$

DM fragility matrix

damage state	~4 cm	4 ~ 10 cm	10 ~ 30 cm	30 ~ 100 cm	100 cm ~
Neglegible	0.95	0.05	0.00	0.00	0.00
Minor	0.05	0.80	0.20	0.05	0.00
Moderate	0.05	0.10	0.60	0.25	0.05
Severe	0.00	0.05	0.15	0.55	0.10
Catastophic	0.00	0.00	0.05	0.15	0.85

damage state	~4 cm	4 ~ 10 cm	10 ~ 30 cm	30 ~ 100 cm	100 cm ~
P[DM > Negligible edp]	0.10	0.95	1.00	1.00	1.00
P[DM > Minor edp]	0.05	0.15	0.80	0.95	1.00
P[DM > Moderate edp]	0.00	0.05	0.20	0.70	0.95
P[DM > Severe edp]	0.00	0.00	0.05	0.15	0.85
P[DM > Catastophic edp]	0.00	0.00	0.00	0.00	0.00

minor

catastrophic

DV fragility matrix

Rapair Cost Ratio	Neglegible	Minor	Moderate	Severe	Catastophic
0	0.95	0.10	0.00	0.00	0.00
0.1	0.05	0.60	0.15	0.00	0.00
0.2	0.00	0.20	0.50	0.00	0.00
0.3	0.00	0.10	0.20	0.00	0.00
0.4	0.00	0.00	0.15	0.15	0.00
0.5	0.00	0.00	0.00	0.50	0.00
0.6	0.00	0.00	0.00	0.25	0.00
0.7	0.00	0.00	0.00	0.10	0.00
0.8	0.00	0.00	0.00	0.00	0.10
0.9	0.00	0.00	0.00	0.00	0.20
1	0.00	0.00	0.00	0.00	0.70

Rapair Cost Ratio	Neglegible	Minor	Moderate	Severe	Catastophic
P[DV > RCR=0.0 DM]	0.05	0.90	1.00	1.00	1.00
P[DV>RCR=0.1 DM]	0.00	0.30	0.85	1.00	1.00
P[DV > RCR=0.2 DM]	0.00	0.10	0.35	1.00	1.00
P[DV > RCR=0.3 DM]	0.00	0.00	0.15	1.00	1.00
P[DV > RCR=0.4 DM]	0.00	0.00	0.00	0.85	1.00
P[DV > RCR=0.5 DM]	0.00	0.00	0.00	0.35	1.00
P[DV > RCR=0.6 DM]	0.00	0.00	0.00	0.10	1.00
P[DV>RCR=0.7 DM]	0.00	0.00	0.00	0.00	1.00
P[DV > RCR=0.8 DM]	0.00	0.00	0.00	0.00	0.90
P[DV > RCR=0.9 DM]	0.00	0.00	0.00	0.00	0.70
P[DV > RCR=1.0 DM]	0.00	0.00	0.00	0.00	0.00

DV fragility curve

Integration of Uncertainties through PBEE Framework

EDP = Pile cap 1 horizontal displacement

10⁰

10

10⁻³

DM2

IM hazard curve

EDP|IM relationship

10⁰ $EDP\mu = 0.08 (IM)^{1.05}$ $\sigma_{in(EDP|IM)} = 0.894$ 10 pileCap1 hdisp (m) _____ 10⁻³ 10 10 PGV (cm/sec)

DM4

EDP hazard curve

DM fragility

DM hazard curve

DM3

Damage state: pileCap1 hdisp (m)

DV hazard curve

0.8

EDP = Pile cap 1 horizontal displacement

Integration of Uncertainties through PBEE Framework

Outline

PEER PBEE framework
Target bridge structure and modeling
Input Motions
Bridge response
Uncertainty in EDP
Foundation Damage and loss
Bridge damage and loss

Bridge Damage and Loss

A series of repair cost analyses were performed using the Matlab code developed by Mackie et al. (2006). This code is set up to produce conditional probabilities of various repair cost levels given an intensity measure, which was taken as peak velocity.

Performance Group	EDP
Column (4)	Maximum and residual tangential drift ratios
Expansion joint (2)	Longitudinal abutment displacement
Bearings (2)	Bearing displacement (absolute)
Back wall (2)	Back wall displacement
Approach slab (2)	Vertical abutment displacement
Deck segment (5)	Depth of spalling
Abutment pile groups (2)	Horizontal displacement
Interior pile groups (4)	Horizontal displacement

performance group \rightarrow damage model \rightarrow repair method and cost \downarrow Total repair cost = S Repair methods and cost IM \rightarrow Total repair cost

Mackie & Stojadinovic damage and loss model

Bridge Damage and Loss

$$\lambda_{DV}(dv_{l}) = \sum_{i=1}^{N_{IM}} P[DV > dv_{l} | IM = im_{i}] \Delta \lambda_{IM}(im_{i})$$

$$P[DV_{l} | IM_{i}] = \sum_{k=1}^{N_{DM}} \sum_{j=1}^{N_{EDP}} \sum_{i=1}^{N_{IM}} P[DV | DM_{k}] P[DM_{k} | EDP_{j}] P[EDP_{j} | IM_{i}]$$

Mackie & Stojadinovic damage and loss model

At PGV >140 cm/sec greatest repair cost is temporary support of the superstructure

Sensitivity of Bridge Losses to Uncertainty

Thank You

Questions and Comments

Backup slides

Input Motions and Intensity Measures (IMs)

Table 1: Input motions (hazard: 50 % in 50 years)

Record	File	Earthquake	Magnitude	MSF	PGA_M
Coyote Lake Dam abutment	A01	Coyote Lake	5.7	2.247	0.672
Gilroy #6	A02	(6/8/1979)			
Temblor	A03	Parkfield	6.0	1.931	0.578
Array $\#5$	A04	(6/27/1966)			
Array #8	A05				
Fagundes Ranch	A06	Livermore	5.5	2.497	0.747
Morgan Territory Park	A07	(6/27/1980)			
Coyote Lake Dam abutment	A08	Morgan Hill	6.2	1.753	0.524
Anderson Dam DS	A09	(4/24/1984)			
Halls Valley	A10				

Table 2: Input motions (hazard: 10 % in 50 years)

Record	File	Earthquake	Magnitude	MSF	PGA_M
Los Gatos Presentation Ctr	B01	Loma Prieta	7.0	1.226	0.799
Saratoga Aloha Avenue	B02				
Corralitos	B03				
Gavilan College	B04				
Gilroy Historic	B05				
Lexington Dam abutment	B06				
Kobe JMA	B07	Kobe, Japan	6.9	1.279	0.834
Kofu	B08	Tottori, Japan	6.6	1.458	0.951
Hino	B09	(10/6/2000)			
Erzincan	B10	Erzincan	6.7	1.395	0.909

Table 3: Input motions (hazard: 2 % in 50 years)

Record	File	Earthquake	Magnitude	MSF	PGA_M
Los Gatos Presentation Ctr	C01	Loma Prieta	7.0	1.226	1.228
Saratoga Aloha Avenue	C02				
Corralitos	C03				
Gavilan College	C04				
Gilroy Historic	C05				
Lexington Dam abutment	C06				
Kobe JMA	C07	Kobe, Japan	6.9	1.279	1.282
Kofu	C08	Tottori, Japan	6.6	1.458	1.461
Hino	C09	(10/6/2000)			
Erzincan	C10	Erzincan	6.7	1.395	1.398

Table 4: Input motions (hazard: 97 % in 50 years)

Record	File	Earthquake	Magnitude	MSF	PGA_M
Coyote Lake Dam abutment	D01	Coyote Lake	5.7	2.247	0.672
Gilroy #6	D02	(6/8/1979)			
Temblor	D03	Parkfield	6.0	1.931	0.578
Array #5	D04	(6/27/1966)			
Array #8	D05				
Fagundes Ranch	D06	Livermore	5.5	2.497	0.747
Morgan Territory Park	D07	(6/27/1980)			
Coyote Lake Dam abutment	D08	Morgan Hill	6.2	1.753	0.524
Anderson Dam DS	D09	(4/24/1984)			
Halls Valley	D10				

Liquefaction Effects

Soil displacement (liquefaction)

Soil displacement (no liquefaction)

After Northridge earthquake motion (PGA=0.224g)

Local Responses

Locations of max. pile curvature (left abutment)

Parametric Uncertainty

Tornado diagrams (small shaking)

DV fragility curve

Integration of Uncertainties through PBEE Framework

PEER Performance-Based Earthquake Engineering

PEER Performance-Based Earthquake Engineering

PEER Performance-Based Earthquake Engineering

