1

Characterizing seismic hazard to distributed systems using efficient simulation techniques

Jack Baker & Nirmal Jayaram

Civil & Environmental Engineering Stanford University

Motivation

 We are interested in assessing seismic risk to distributed transportation networks

 The spatial extent of these systems is a challenge

 Spatial correlation of ground motion intensities is an important consideration for these analyses

Bay area interstate highways

Background: seismic sources

Both this work and traditional Probabilistic Seismic Hazard Analysis require seismic source characterization

Major Bay area faults

Background: ground motion prediction

Ground Motion Prediction ("attenuation") models provide predictions of the distribution of ground motion intensity (e.g., spectral acceleration) as a function of earthquake magnitude, source-to-site distance, etc.

Model form:

Observed spectral acceleration values from the 1999 Chi-Chi, Taiwan earthquake

Ground motion intensity at two sites

$$\ln Sa_i(T) = \overline{\ln Sa_i(M, R_i, T, ...)} + \varepsilon_i + \eta$$

$$\ln Sa_{j}(T) = \overline{\ln Sa_{j}(M, R_{j}, T, ...)} + \varepsilon_{j} + \eta$$

Observed "residuals" from well-recorded earthquakes

Observations of past earthquakes shows that these residuals are correlated at nearby sites, due to

- Common source earthquake
- Similar location to asperities
- Similar wave propagation paths
- Similar local site effects

Note that this correlation is different than ground motion coherence

$$\varepsilon_i = \ln Sa_i(T) - \overline{\ln Sa_i(M, R_i, T, ...)} - \eta$$

PGA ε's from the 1999 Chi-Chi earthquake

Estimation of correlation (or covariance)

If we assume stationarity and anisotropy of the \mathcal{E} 's, we can pool paired observations with comparable distances to estimate a correlation coefficients

Estimation of correlation from well-recorded earthquakes

We can turn these observations into a predictive model

Empirical semivariogram for PGA ε's from the 1999 Chi-Chi earthquake

Application: risk to lifeline systems

$$\ln Sa_i(T) = \overline{\ln Sa_i(M, R, T, ...)} + \varepsilon_i + \eta$$

We can't produce PSHA-like maps of hazard, but we can use Monte Carlo simulations to produce a set of ground motion scenarios and associated probabilities

An aside: comparison with single-site PSHA

If we look at the observed Sa values from these simulations at any single site, they match the distribution from traditional single-site PSHA

Application: risk to lifeline systems

For each map of spectral accelerations, we can predict the resulting damage and disruption to our network

Illustrative results using a simplified highway network model

Application: risk to lifeline systems

If we aggregate all these disruptions, we can compute a rate of disruption exceedance

Consideration of correlations has a significant impact here

We can repeat this exercise omitting the ε correlation, to see the impact of this correlation

$$\ln Sa_i(T) = \overline{\ln Sa_i(M, R, T, ...)} + \varepsilon_i + \eta$$

Improving simulation efficiency: importance sampling

If done correctly, this reduces our computational expense by ~2 orders of magnitude

Improving simulation efficiency: K-means clustering

Select a *single* representative from the cluster to represent *all* simulations in the cluster

This can reduce computational expense by another ~2 orders of magnitude

Loss estimation using more efficient techniques

These techniques reduce our computational expense without biasing our estimates of disruption

Conclusions and current status

 We have used well-recorded earthquakes to measure spatial correlation of spectral acceleration values

- Using this model, we can generalize traditional PSHA to characterize ground motion intensities at many sites
- This characterization can not be done analytically, but efficient sampling and clustering make simulation tractable
- We assessed a simplified transportation network to demonstrate that this approach is unbiased with respect to basic Monte Carlo simulation
- We now hope to use this approach to study more realistic models distributed infrastructure