FUTURE DIRECTIONS FOR SEISMIC RISK MANAGEMENT FOR TRANSPORTATION NETWORKS by # Stuart D. Werner Seismic Systems & Engineering Consultants Oakland CA for presentation at PEER Workshop on Seismic Risk Assessment and Management of Transportation Networks Berkeley CA March 18, 2009 #### **SCOPE** **System Performance Evaluation Framework** - Spatially Distributed Systems - Uncertainties **User Defined Options** - Type of Evaluation - Risk-Reduction Options - Performance Requirements - Stakeholder Impacts #### HIGHWAY SYSTEM SRA LOSS METRICS - Traffic Flow Decreases - Travel Time Delays - Trip Demands - Resiliency - System Wide - To/From Selected Locations - Along Selected Routes - Direct Economic Losses - Repair Costs - Due to Travel Time Delays and Trips Foregone - Indirect Economic Losses - Regional / National #### SCOPE • System Performance Evaluation Framework **Spatially Distributed Systems** Uncertainties #### SPATIALLY DISTRIBUTED HIGHWAY SYSTEM: Some Differences Relative to Single Site System | | Spatially Distributed Highway System | Single Site Systems | |-----------------------|--|---| | Seismic
Hazards | For Given Scenario EQ Compute Consistent Spatially Dispersed Hazards throughout System Many Different Site Conditions | Starting Point: • Seismic Hazard Analysis • Compute One Set of Site-Specific Seismic Hazards • One Set of Site Conditions | | Component
Response | Large Number/ Many Types of
Components Compute Consistent Spatially Dispersed
Component Damage States Possible Multiple Spatially Dispersed
Post-EQ Repair Activities | Smaller Number of Facilities Compute One Set of Localized Damage States for a Few Facilities Localized Repair Activities | | System
Response | Spatially Dispersed: Roadway Redundancies Roadway Traffic Carrying Capacities Damage Locations Trip Demands User Entry/Exit Locations | Limited and Localized Link Redundancies Link Service Capacities Damage Locations Service Demands User Entry/Exit Locations | ### SPATIALLY DISTRIBUTED HIGHWAY SYSTEM Input Data - Because of Size and Spatial Extent of System - Significant Input Data Needed - Highways and Bridges (FHWA Electronic Databases) - Highway Performance Monitoring System (HPMS) - National Highway Planning Network (NHPN) - National Bridge Inventory (NBI) - Soil Conditions - NEHRP Classifications - Other Soils Data: From State DOT - Trip Demands: - Trip Tables from Metropolitan Planning Organizations (MPOs) #### SCOPE - System Performance Evaluation Framework - Spatially Distributed Systems #### **UNCERTAINTIES IN SRA OF HIGHWAY SYSTEMS** - Well Recognized Sources of Uncertainty - Earthquake Occurrences over Time - Seismic Hazard Estimation - Bridge Damage Estimation - Other Important Uncertainties - Damage Repair Requirements - Traffic/Travel Impacts - Input Data Constraints ### UNCERTAINTIES IN SRA OF HIGHWAY SYSTEMS: Damage Repair Requirements - Repair Requirements - Costs - Mobilization Time - Rate of Repair - Functionality of Component during Repairs - Depends on - Prior Post-EQ Experience - Availability of Repair Resources - Extent of Damage within Highway System - Accessibility of Damage - Extent of Damage to Other Elements of Built Infrastructure ### UNCERTAINTIES IN SRA OF HIGHWAY SYSTEMS: Traffic/Travel Impacts - Effects of Increased Traffic Congestion due to EQ Damage to System - Increase Travel Times - Reduce Trip Demands - Assumptions in Analysis of Post-EQ Travel within Disrupted System - Traveler Route Choice - Relationship between Trip Demand and Travel Time - Other Potential Impacts on Post-EQ Travel Not Considered - Damage to Other Elements of Built Infrastructure ### SPATIALLY DISTRIBUTED HIGHWAY SYSTEM: Some Input Data Constraints - Possible Errors/Gaps in Highway Data from HPMS and NHPN - Bridges - NBI Database Insufficient for Seismic Performance Evaluation - Some State DOTs have Supplementary Data - Soil Conditions for Assessment of Liquefaction, Landslide Hazards - Data may be Time Consuming to Obtain ## UNCERTAINTIES IN SRA OF HIGHWAY SYSTEM: Component Damage Estimation - Bridge Fragility Modeling - Large Numbers of Bridges - Insufficient Input Data on Bridge Attributes - Combined Effects of Ground Shaking and Permanent Ground Displacement - Fragility Modeling for Other Components - Tunnels, Roadways, Approach Fills, Retaining Walls, Culverts - Damage State Definitions - Need for Improved Basis for Estimating Repairs - HAZUS Damage States are Insufficient for this Purpose