

Civil and Environmental Engineering Department University of California, Berkeley, CA - 94720

SELF COMPACTING HYBRID FIBER REINFORCED CONCRETE COMPOSITES FOR BRIDGE COLUMNS

Pardeep Kumar, Gabriel Jen, Marios Panagiotou, Claudia P. Ostertag

CEE Department

University of California, Berkeley

August 11, 2010

SELF COMPACTING HyFRC FOR BRIDGE COLUMNS

Outline

- OBJECTIVES OF RESEARCH PROGRAM
- RESEARCH TASKS
- ACCOMPLISHMENTS
- BRIEF SUMMARY OF RESULTS
- FUTURE DIRECTIONS

OBJECTIVES OF RESEARCH PROGRAM

Environmental Damage

Seismic Damage

• Enhancing damage resistance of bridge columns subjected to both environmental and seismic loading conditions.

OBJECTIVES OF RESEARCH PROGRAM (continued)

- Improving load carrying capacity of bridge columns at large drift ratios.
- High workability, full compaction & ease of construction (faster construction times and improved consolidation around reinforcements).

Self Compacting HyFRC (SC-HyFRC) for bridge columns

RESEARCH TASKS

- <u>Task I:</u> Development and Design of SC-HyFRC for Bridge Columns.
- <u>Task II</u>: Design and Testing of 1:4.7 Scale Specimens using SC-HyFRC.

ACCOMPLISHMENTS

- <u>Task I:</u> Development and Design of SC-HyFRC for Bridge Columns Completed. (Gabriel Jen, David Lallemant, Will Trono)
- <u>Task II</u>: Design and Testing of Two out of Three Test Specimens using SC-HyFRC Completed. (Pardeep Kumar, Gabriel Jen)
- PEER Report Submitted.

BRIEF SUMMARY OF TEST RESULTS

• <u>Task I:</u> Development and Design of SC-HyFRC for Bridge Columns.

ADVANTAGES OF SC-HyFRC OVER, CONVENTIONAL FRC

SC-HyFRC provides crack control on multi-scale for durability, high ductility in tension & compression, and higher shear resistance.

SC-HyFRC FOR BRIDGE COLUMNS

Final SC-HyFRC for bridge columns.

Desired flow diameter of 24 in. without segregation of fibers and aggregates accomplished through parametric study:

- Chemical mixture proportion and SP / VMA ratio,
- Fiber types and volume fraction,
- Paste / aggregate volume ratio,
- Aggregate content and FA / CA ratio.

SC-HyFRC FOR BRIDGE COLUMNS

J-Ring Test

→ Measures: Passing ability, presence of fiber pile-up as function of rebar spacing

Ease of Flow around reinforcements measured with Custom designed J-ring with same rebar spacing as bridge columns

	Cement (lb)	Fly Ash (lb)	Water (lb)	FA (lb)	CA (lb)	SP (wt. % binder)	VMA (wt. % binder)	30mm (V _f)	8mm (V _f)
Mix (#58)	1	0.33	0.6	2.63	1.05	0.46	2.22	1.3	0.2

BRIEF SUMMARY OF TEST RESULTS

• <u>Task II</u>: Design and Testing of Two Test Specimens Using SC-HyFRC Completed.

PROTOTYE COLUMN

(Ketchum et. al. 2004)

TEST SPECIMEN-1 (TS-1)

CHARACTERISTICS OF TS-1

- Rocking at column / foundation interface.
- Target smeared strain of 4.4% at drift ratio of 5%.

Assumptions:

- Column deforms as rigid body.
- Ignores strain penetration at both ends of the unbonded length.

TEST SPECIMEN-2 (TS-2)

CHARACTERISTICS OF TS-2

Stainless steel longitudinal rebars

- To enhance spread of plasticity (avoid localized cracking).
- Delay bar fracture.

CHARACTERISTICS OF TS-2

Corrugated steel pipe

Avoid crack localization at column / foundation interface

EXPERIMENTAL SETUP

Elevation View

EXPERIMENTAL SETUP

Global View of Test Setup

LOADING PROTOCOL

Top Displacement, △ (in)	Drift Ratio, (θ_r) %
0.1	0.15
0.2	0.30
0.3	0.44
0.4	0.60
0.8	1.2
1.2	1.8
1.6	2.4
2.0	3.0
2.4	3.6
2.8	4.2
3.2	4.8
4.0	6.0
4.8	7.1
5.6	8.3
6.4	9.5
7.6	11.3

DAMAGE REDUCTION COMPARED WITH CONVENTIONAL COLUMNS

TS-1(a), TS-2 (c); Conv. Concrete ρ_v = 0.37%; ρ_v = 0.7%

- There was significant damage reduction in the test specimens built using SC-HyFRC, compared to conventional concrete columns.
- In both specimens spalling of cover occurs only locally and is delayed up to 3.6% drift ratio despite half the transverse reinforcement ratio, (ρ_v) , 0.37% vs. 0.7%).

LATERAL FORCE-DISPLACEMENT RESPONSE

Lateral Force – Lateral Displacement Response of TS-1

LATERAL FORCE-DISPLACEMENT RESPONSE

Lateral Force – Lateral Displacement Response of TS-2

Comparison of Lateral Force – Lateral Displacement Response of TS-1 and TS-2

OBJECTIVES ACCOMPLISHED

Damage Reduction √

(no damage due to spalling up to drift ratio of 3.6% despite half transverse reinforcement ratio)

Axial load carrying capacity at large drift ratios \(\square\$

(up to drift ratio of 11.3%)

High compaction & fast construction \(\sqrt{\chi} \)

FUTURE DIRECTIONS

Thank you for your attention