

Overview

www.neesgc.gatech.edu

- Research Results to Date:
 Improving and understanding the seismic performance of pile-to-wharf connections
 - Marginal wharfs with vertical precast piles
 - Fragility functions for piles and connections
- Immediate Research Effort:
 Seismic performance of marginal wharf systems
 - Models of piles, current and improved connections
 - Nonlinear modeling of system including soil
- Long-term Research: Improved seismic performance of all port structures with batter piles.

Seismic Risk Management
for Port Systems
SAFEGUARDING THE INFRASTRUCTURE OF GLOBAL TRADE
Pacific Earthquake Engineering Center

Pile-to-Wharf Connection Tests

Seismic Risk Management for Port Systems

Current Connection Designs

Embedded Dowel Connection

- Very commonly used
- Can include inward and outward bent dowels, T-headed dowels, or bond bars

Extended Pile Connection

- Used when pile is over driven
- Extension is RC

Embedded Pile Connection

 Generally provides high fixity of pile

Extended Strand Connection

Older connection

PEER

• Difficult to construct

Seismic Risk Management for Port Systems

Damage Observed After Earthquakes

Port of Oakland after Loma Prieta (Serventi et al.)

Precast Pile with damage concentrated in the connection (extended strand connection?)

Approach Jetty after the Great Sumatra Earthquake (Rai et al. 2006)

Inadequately confined RC pile with damage concentrated in the pile.

Seismic Risk Management for Port Systems

CR: Controlled-Rocking

Performance Improvements:

- 1. Reduced deck damage (shear)
- 2. Increase rotation capacity prior to spalling

o.75-inch asphalt wrap 15-in. debonded region

0.75-inch CDB pad

PEER

for Port Systems

PEER Test Specimens

450 kip Axial **Load Repeat** Test

900 kip Axial Load

Specimen 13: CR Connection II

Specimen 14: CR Connection III

0.75 inch **Annular Cotton Duck Bearing** Pad

0.5 inch Annular **Fiberlast Bearing** Pad

Specimen 15: Annular CR **Connection – Cotton Duck**

Specimen 16: Annular CR **Connection – Rubber Pad**

Seismic Risk Management for Port Systems

SAFEGUARDING THE INFRASTRUCTURE OF GLOBAL TRADE Pacific Earthquake Engineering Center www.neesgc.gatech.edu

Damage Comparison at 2.5% Rotation

Specimen 9: Current Design

Specimen 13: CR Connection

Specimen 14 : CR Higher Axial Load

Specimen 15: Annular: CDBP

Seismic Risk Management for Port Systems

Damage Comparison at 5.5% Rotation

Specimen 9: Current Design

Specimen 13: CR Connection

Specimen 14 : CR Higher Axial Load

Specimen 15: Annular: CDBP

PEER

Seismic Risk Management for Port Systems

Damage Comparison at 8.5% Rotation

Specimen 9: Current Design

Specimen 13: CR Connection

Specimen 14 : CR Higher Axial Load

Specimen 15: Annular: CDBP

PEER

Seismic Risk Management for Port Systems

SAFEGUARDING THE INFRASTRUCTURE OF GLOBAL TRADE Pacific Earthquake Engineering Center

www.neesgc.gatech.edu

Hysteretic Behavior-Moment/Rotation

Seismic Risk Management for Port Systems

SAFEGUARDING THE INFRASTRUCTURE OF GLOBAL TRADE Pacific Earthquake Engineering Center www.neesgc.gatech.edu

Current Focus: Performance Assessment

Seismic Risk Management for Port Systems

SAFEGUARDING THE INFRASTRUCTURE OF GLOBAL TRADE Pacific Earthquake Engineering Center www.neesgc.gatech.edu

Objectives

Quantify performance of marginal wharf with current connection and improved connections

Seismic Risk Management for Port Systems

SAFEGUARDING THE INFRASTRUCTURE OF GLOBAL TRADE Pacific Earthquake Engineering Center www.neesgc.gatech.edu

Models

Seismic Risk Management for Port Systems

SAFEGUARDING THE INFRASTRUCTURE OF GLOBAL TRADE Pacific Earthquake Engineering Center www.neesgc.gatech.edu

Damage States

	DS1	DS2	DS3	DS4	DS5
Damage States	Pile Cracking	Major Cracks in the deck	Moderate pile spalling, no displacement	Deck Spalling, exposed bent rebar	Badly damaged pile head
Repair	Epoxy inject cracks.	Clean andepoxy inject cracks	Remove spalled concrete. Apply shotcrete.	Chip out spalled concrete. Paint rebar. Epoxy-inject cracks. Apply shotcrete &coat repair.	Replace with new pile adjacent to broken pile.

Fragility Curves

Proposed Research (Y2)

Recent Accomplishments:

- Verified modeling of pile
- Developed and verifying CR connection model
- Developed model of marginal wharf in Oakland

Proposed Research Tasks:

- Performance models for CR connection
- Soil modeling and ground motion input (w/ P. Arduino)
- Nonlinear dynamic response history analyses to determine performance of current and improved ports.
- Resources required: 1 year and \$60,000.

Seismic Risk Management for Port Systems

SAFEGUARDING THE INFRASTRUCTURE OF GLOBAL TRADE Pacific Earthquake Engineering Center

www.neesgc.gatech.edu

PEFE

Future Experimental and Analytical Study

Seismic Risk Management for Port Systems

SAFEGUARDING THE INFRASTRUCTURE OF GLOBAL TRADE Pacific Earthquake Engineering Center www.neesgc.gatech.edu

Future Work: Batter Piles

- Improving the performance of Marginal Wharfs
 - Improved connection will reduce connection damage
 - Assess vulnerability of piles below the soil line
 - Stiffer structural systems to reduce damage: batter piles
- Extending results to structural systems of **Alternative Port Terminals**
 - Intermediate Hubs
 - Piers
 - Liquefied Natural Gas (LNG) ports

Seismic Risk Management for Port Systems

www.neesgc.gatech.edu

PEFE SAFEGUARDING THE INFRASTRUCTURE OF GLOBAL TRADE Pacific Earthquake Engineering Center

Proposed Batter Pile Connections

Embedded Section Connection

Through-Rod Connection

Shear-Dowel Connection

Seismic Risk Management for Port Systems

Future Work: Improving Performance with Batter Piles

- Analytical study of system performance
- Experimental investigation of connection performance
- Analytical and performance models of connection
- Quantifying improvements in system performance

Seismic Risk Management
for Port Systems
SAFEGUARDING THE INFRASTRUCTURE OF GLOBAL TRADE Pacific Earthquake Engineering Center
www.neesgc.gatech.edu

THANK YOU!

Seismic Risk Management for Port Systems

SAFEGUARDING THE INFRASTRUCTURE OF GLOBAL TRADE Pacific Earthquake Engineering Center www.neesgc.gatech.edu

