Pilot PBEE Studies for Next Generation Bridges

Bozidar Stojadinovic – UC Berkeley Kevin Mackie – Central Florida Ady Aviram – ex-UC Berkeley, SGH

Next Generation Bridge

- "Bridges of the future"
 - Longer service life (100 years)
 - Accelerated construction
 - Easily widened or adapted
 - Reduced life-cycle costs
 - Reduced vulnerability to extreme hazards
 - Reduced cost
- From Caltrans perspective
 - Equal or less vulnerable than current design
 - Inclusive of large portion of bridge inventory

Next Generation Bridge Workshops

- May 20, 2009 with Caltrans engineers
- Aug. 24, 2009 with PEER researchers
- Review of major topics:
 - 1) Performance goals and objectives for next generation of bridges
 - Characteristics of next generation systems (materials, technologies, etc.)
 - 3) Ruminating on next generation testbed(s)

1: Performance objectives

- Current approach: monolithic, CIP, RC or PT bridges
 - Damage assessed in terms of deformations
 - Construction and repair constrained by existing approaches
- Need new measures of resilience
 - Functionality
 - Direct (repair) and indirect cost (down time)
 - Carbon footprint, design speed, etc.
- Measuring new system with old PO
 -> only incremental gains

2: NextGen bridge systems

- Focus on system approach
 - Hazards + Structural + Geotechnical + Life-Cycle
 - Foundation performance tied to structural performance objectives
- Techniques and systems
 - Modular, precast
 - Rocking
 - Base isolation
 - Rocking + modular
 - FRC, ECC, composites, & other materials

3: NextGen testbed(s)

- Boza's blank box
 - No specified technology or design
 - Just cross a valley

New modular or BI design

Modification to existing Ketchum testbed

- Increase column R factor
- Add in-span hinge and/or longer span(s)
- Different column heights
- Precast components
- Base isolation
- Rocking (foundations or joints)
- Multi-column bents

Previous Overpass Testbed

- Bridge characteristics (a la Ketchum)
 - CIP, post-tensioned box girder (Caltrans like)
 - Deck 39 ft wide, 6 ft deep
 - Single column bents
 - Span lengths 120-150x3-120 ft

Details of RC bridge- type 1A with base isolation

PEER

Modular construction

Ory joint vs continuous column comparison

PEER

Pilot Studies on Bridge Systems

- Conventionally reinforced concrete (RC) bridge: Type 1A (Ketchum et al. 2004)
 - Inelastic column behavior $\mu_d < 4.5$, $D_c = 4'$, $\rho_l = 2\%$, $\rho_t = 0.16\%$.

Fiber-reinforced concrete (FRC) bridge:

- Fiber-reinforced bridge pier with 1.5% volume fraction V_f of steel fibers.
- Fiber aspect ratio L_f/ϕ_f of 80.
- Special reinforcement details in the plastic hinge zone: longitudinal dowels to avoid base cracks and rebar debonding to reduce stress concentration and offset rebar fracture.
- Relaxed transverse reinforcement.
- Analytical model based on predicted FRC behavior.
- Improved model calibrated according to experimental results of two ¹/₄- scale FRC cantilever columns tested in Davis Hall, UC Berkeley is pending.

Seismically isolated (BI) bridges:

- Lead rubber bearings underneath superstructure.
- BI1: Elastic column behavior $\mu_d < 1$, $D_c = 5'$, $\rho_l = 3\%$, $\rho_t = 0.16\%$. Isolators: $B_i = 35''$, $H_i = 20''$
- BI2: Inelastic column behavior: $\mu_d < 2$, $D_c = 4.25'$, $\rho_l = 3\%$, $\rho_t = 0.16\%$. Isolators: $B_i = 31.5''$, $H_i = 15''$
- Design based on AASHTO Guide Specifications for Seismic Isolation Design, SDC 2004

New Construction Costs

Table: New construction costs of RC, FRC, BI1, and BI2 bridges

Itom	Total construction cost 2008Q3					
Item	RC	FRC	BI1	BI2		
Structure excavation (bridge)	\$120,769	\$120,769	\$120,769	\$120,769		
Structure backfill (bridge)	\$89,765	\$89,765	\$89,765	\$89,765		
Furnish piling (Caltrans Ave. Fdn. Cost)	\$104,077	\$104,077	\$104,077	\$104,077		
Drive piling (Caltrans Ave. Fdn. Cost)	\$108,243	\$108,243	\$108,243	\$108,243		
Prestressed cast-in-place concrete	\$294,647	\$294,647	\$294,647	\$294,647		
Structural concrete, bridge footing	\$46,677	\$46,677	\$46,677	\$46,677		
Structural concrete, bridge	\$1,651,188	\$1,651,188				
			\$1,719,376	\$1,705,788		
Joint seal (type B-MR 2")	\$9,919	\$9,919	\$9,919	\$9,919		
Bar reinforcing steel	\$453,639	\$450,446	\$492,687	\$485,649		
Concrete barrier (type 732)	\$80,517	\$80,517	\$80,517	\$80,517		
Steel fibers	\$0	\$17,069	\$0	\$0		
Lead rubber bearing isolators	\$0	\$0	\$449,056	\$264,535		
Subtotal	\$2 959 441	\$2 973 316	\$3 515 733	\$3 310 586		
Percent increase wrt' RC bridge (%)	0	0.5	18.8	11.9		
Superstructure cost	~\$2490k					
Foundation cost	~\$259k					
Earthworks	~\$210k					

RCR and RT MAF or loss curves for different bridge types

Construction costs, annual repair cost and repair time for different bridge types

Parameter	RC bridge	FRC bridge	BI1 bridge	BI2 bridge
NC- Cost of new construction	\$2,959,441	\$2,973,316	\$3,515,733	\$3,310,586
A _{RCR} - Mean annual RCR	0.80%	0.65%	0.02%	0.13%
A- Mean annual repair cost	\$23,530	\$19,433	\$989	\$4,388
A _{RT} - Mean annual repair	8 CWD	10 CWD	1 CWD	4 CWD
time				

PEER

Cost-Effectiveness of Bridge Systems

Net Present Value with varying discount rate, *i* and c.o.v. for the repair cost annuity, *A*.

	RC bridge			FRC bridge				
Confidence	Discount rate, <i>i</i> (%)				Discount rate, <i>i</i> (%)			
Intervals	2	4	6	8	2	4	6	8
$\mu_{-}\sigma$, c.o.v.=0.4	4,482,288	3,687,240	3,375,409	3,233,737	4,230,997	3,574,387	3,316,853	3,199,850
$\mu_{-}\sigma$, c.o.v.=0.3	4,736,096	3,808,539	3,444,737	3,279,453	4,440,611	3,674,565	3,374,110	3,237,606
$\mu_{-}\sigma$, c.o.v.=0.2	4,989,903	3,929,839	3,514,065	3,325,168	4,650,224	3,774,744	3,431,366	3,275,361
$\mu_{-}\sigma$, c.o.v.=0.1	5,243,711	4,051,139	3,583,392	3,370,884	4,859,838	3,874,922	3,488,622	3,313,117
^μ - Mean	5,497,519	4,172,439	3,652,720	3,416,600	5,069,451	3,975,101	3,545,878	3,350,873
$\mu_{+}\sigma$, c.o.v.=0.1	5,751,327	4,293,738	3,722,048	3,462,316	5,279,065	4,075,279	3,603,134	3,388,628
$\mu_{+}\sigma$, c.o.v.=0.2	6,005,134	4,415,038	3,791,376	3,508,032	5,488,679	4,175,457	3,660,391	3,426,384
$\mu_{+}\sigma$, c.o.v.=0.3	6,258,942	4,536,338	3,860,704	3,553,748	5,698,292	4,275,636	3,717,647	3,464,139
$\mu_{+}\sigma$, c.o.v.=0.4	6,512,750	4,657,638	3,930,032	3,599,464	5,907,906	4,375,814	3,774,903	3,501,895
		BI1 F	nridge			BI2 k	nridge	
Confidence		BI1 b	oridge rate, <i>i</i> (%)			BI2 b	oridge rate, <i>i</i> (%)	
Confidence Intervals	2	BI1 t Discount	oridge rate, <i>i</i> (%) 6	8	2	BI2 b Discount	oridge rate, <i>i</i> (%) 6	8
Confidence Intervals μ-σ, c.o.v.=0.4	2 3.568.620	BI1 t Discount 4 3.541,009	oridge rate, <i>i</i> (%) 6 3.530.179	8 3.525.259	2 3,593,951	BI2 t Discount 1 4 3.446.012	oridge rate, <i>i</i> (%) 6 3.387.988	8 3,361,626
Confidence Intervals μ_σ, c.o.v.=0.4 μ_σ, c.o.v.=0.3	2 3,568,620 3,577,434	BI1 t Discount 1 4 3,541,009 3,545,221	oridge rate, i (%) 6 3,530,179 3,532,587	8 3,525,259 3,526,847	2 3,593,951 3,641,179	BI2 t Discount 1 4 3,446,012 3,468,583	oridge rate, <i>i</i> (%) 6 3,387,988 3,400,888	8 3,361,626 3,370,132
Confidence Intervals μ_σ, c.o.v.=0.4 μ_σ, c.o.v.=0.3 μ_σ, c.o.v.=0.2	2 3,568,620 3,577,434 3,586,249	BI1 k Discount 2 3,541,009 3,545,221 3,549,434	rate, <i>i</i> (%) 6 3,530,179 3,532,587 3,534,995	8 3,525,259 3,526,847 3,528,434	2 3,593,951 3,641,179 3,688,406	BI2 t Discount 1 3,446,012 3,468,583 3,491,154	rate, <i>i</i> (%) 6 3,387,988 3,400,888 3,413,788	8 3,361,626 3,370,132 3,378,639
Confidence Intervals μ_σ, c.o.v.=0.4 μ_σ, c.o.v.=0.3 μ_σ, c.o.v.=0.2 μ_σ, c.o.v.=0.1	2 3,568,620 3,577,434 3,586,249 3,595,063	BI1 k Discount 1 4 3,541,009 3,545,221 3,549,434 3,553,647	rate, <i>i</i> (%) 6 3,530,179 3,532,587 3,534,995 3,537,402	8 3,525,259 3,526,847 3,528,434 3,530,022	2 3,593,951 3,641,179 3,688,406 3,735,634	BI2 t Discount 1 4 3,446,012 3,468,583 3,491,154 3,513,725	rate, <i>i</i> (%) 6 3,387,988 3,400,888 3,413,788 3,426,688	8 3,361,626 3,370,132 3,378,639 3,387,146
Confidence Intervals $\mu_{-\sigma}$, c.o.v.=0.4 $\mu_{-\sigma}$, c.o.v.=0.3 $\mu_{-\sigma}$, c.o.v.=0.2 $\mu_{-\sigma}$, c.o.v.=0.1 $\mu_{-\sigma}$, mean	2 3,568,620 3,577,434 3,586,249 3,595,063 3,603,878	BI1 k Discount 2 3,541,009 3,545,221 3,549,434 3,553,647 3,557,859	rate, <i>i</i> (%) 6 3,530,179 3,532,587 3,534,995 3,537,402 3,539,810	8 3,525,259 3,526,847 3,528,434 3,530,022 3,531,610	2 3,593,951 3,641,179 3,688,406 3,735,634 3,782,862	BI2 t Discount 1 4 3,446,012 3,468,583 3,491,154 3,513,725 3,536,296	rate, <i>i</i> (%) 6 3,387,988 3,400,888 3,413,788 3,426,688 3,439,589	8 3,361,626 3,370,132 3,378,639 3,387,146 3,395,652
Confidence Intervals $\mu_{-}\sigma$, c.o.v.=0.4 $\mu_{-}\sigma$, c.o.v.=0.3 $\mu_{-}\sigma$, c.o.v.=0.2 $\mu_{-}\sigma$, c.o.v.=0.1 μ_{-} Mean $\mu_{+}\sigma$, c.o.v.=0.1	2 3,568,620 3,577,434 3,586,249 3,595,063 3,603,878 3,612,692	BI1 k Discount 1 4 3,541,009 3,545,221 3,549,434 3,553,647 3,557,859 3,562,072	rate, <i>i</i> (%) 6 3,530,179 3,532,587 3,534,995 3,537,402 3,539,810 3,542,218	8 3,525,259 3,526,847 3,528,434 3,530,022 3,531,610 3,533,197	2 3,593,951 3,641,179 3,688,406 3,735,634 3,782,862 3,830,089	BI2 t Discount 1 4 3,446,012 3,468,583 3,491,154 3,513,725 3,536,296 3,558,867	rate, <i>i</i> (%) 6 3,387,988 3,400,888 3,413,788 3,426,688 3,439,589 3,452,489	8 3,361,626 3,370,132 3,378,639 3,387,146 3,395,652 3,404,159
Confidence Intervals $\mu_{-\sigma}$, c.o.v.=0.4 $\mu_{-\sigma}$, c.o.v.=0.3 $\mu_{-\sigma}$, c.o.v.=0.2 $\mu_{-\sigma}$, c.o.v.=0.1 $\mu_{-\sigma}$, c.o.v.=0.1 $\mu_{+\sigma}$, c.o.v.=0.1 $\mu_{+\sigma}$, c.o.v.=0.2	2 3,568,620 3,577,434 3,586,249 3,595,063 3,603,878 3,612,692 3,621,507	BI1 k Discount 2 3,541,009 3,545,221 3,549,434 3,553,647 3,557,859 3,562,072 3,566,284	rate, <i>i</i> (%) 6 3,530,179 3,532,587 3,534,995 3,537,402 3,539,810 3,542,218 3,544,625	8 3,525,259 3,526,847 3,528,434 3,530,022 3,531,610 3,533,197 3,534,785	2 3,593,951 3,641,179 3,688,406 3,735,634 3,782,862 3,830,089 3,877,317	BI2 k Discount 1 4 3,446,012 3,468,583 3,491,154 3,513,725 3,536,296 3,558,867 3,581,438	rate, <i>i</i> (%) 6 3,387,988 3,400,888 3,413,788 3,426,688 3,426,688 3,439,589 3,452,489 3,465,389	8 3,361,626 3,370,132 3,378,639 3,387,146 3,395,652 3,404,159 3,412,666
Confidence Intervals $\mu_{-}\sigma$, c.o.v.=0.4 $\mu_{-}\sigma$, c.o.v.=0.3 $\mu_{-}\sigma$, c.o.v.=0.2 $\mu_{-}\sigma$, c.o.v.=0.1 $\mu_{-}\sigma$, c.o.v.=0.1 $\mu_{+}\sigma$, c.o.v.=0.1 $\mu_{+}\sigma$, c.o.v.=0.2 $\mu_{+}\sigma$, c.o.v.=0.3	2 3,568,620 3,577,434 3,586,249 3,595,063 3,603,878 3,612,692 3,621,507 3,630,321	BI1 8 Discount 1 4 3,541,009 3,545,221 3,549,434 3,553,647 3,557,859 3,562,072 3,566,284 3,570,497	oridge ate, i (%) 6 3,530,179 3,532,587 3,534,995 3,537,402 3,539,810 3,544,625 3,547,033	8 3,525,259 3,526,847 3,528,434 3,530,022 3,531,610 3,533,197 3,534,785 3,536,373	2 3,593,951 3,641,179 3,688,406 3,735,634 3,782,862 3,830,089 3,877,317 3,924,544	BI2 k Discount of 3,446,012 3,468,583 3,491,154 3,513,725 3,536,296 3,558,867 3,581,438 3,604,009	rate, <i>i</i> (%) 6 3,387,988 3,400,888 3,413,788 3,426,688 3,439,589 3,452,489 3,465,389 3,478,290	8 3,361,626 3,370,132 3,378,639 3,387,146 3,395,652 3,404,159 3,412,666 3,421,172

Project Status

Writing the final report:

- Modular and accelerated seismic construction
- Behavior:
 - Monolithic (with wet joints) with conventional plastic hinges
 - Motion at joints (different at different intensity levels)
 - Isolation or rocking
- Technologies: modular structures
- Expect to finish in a couple of months

Challenges and Future Work

Distribution of the testbed structure:

- OpenSees modules
- Integration with Caltrans
- Support of new PEER projects:
 - New materials
 - Rocking
 - New elements and joints
 - System behavior (e.g. curved rocking bridge)

Thank You!

Please contact:

- Kevin Mackie: <u>kmackie@mail.ucf.edu</u>
- Boza Stojadinovic: <u>boza@ce.berkeley.edu</u>

