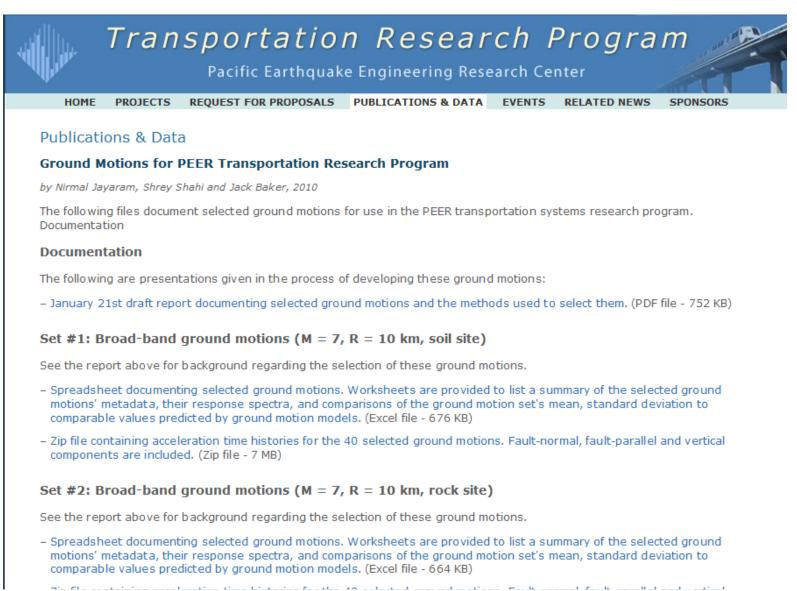
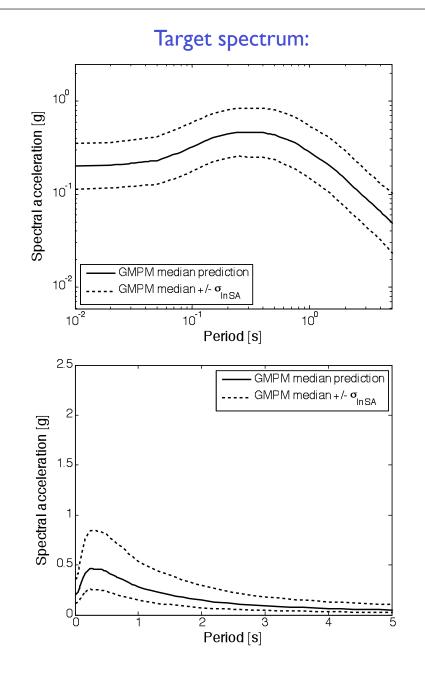
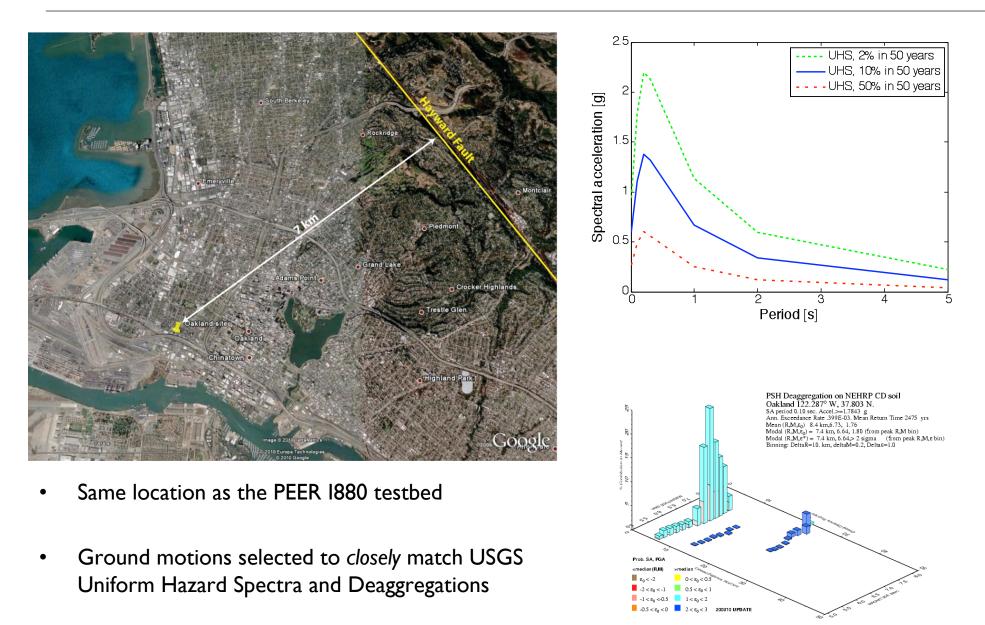
Ground motions for the PEER Transportation Systems Research Program

Jack Baker


Civil & Environmental Engineering Stanford University

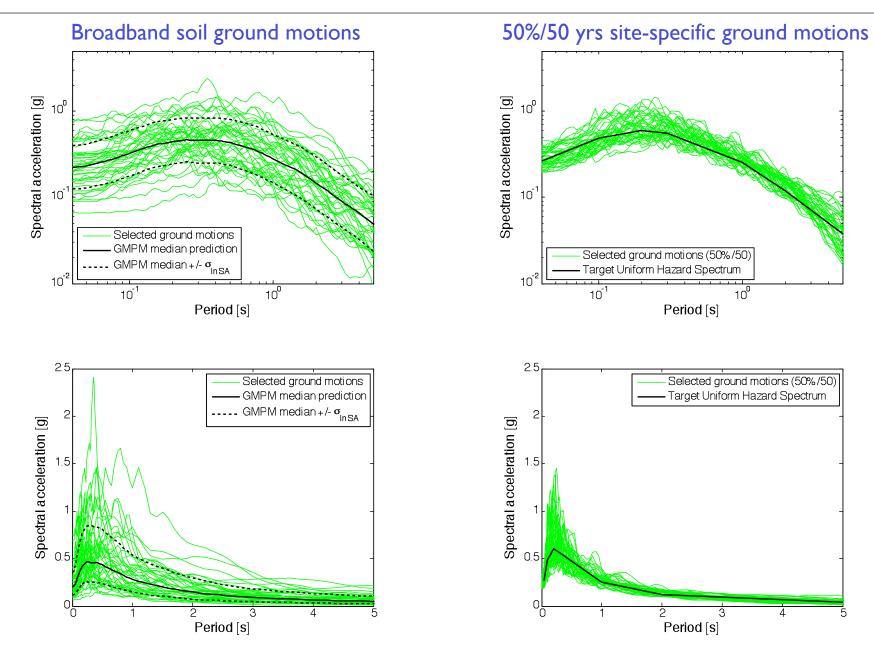
Delivered product: standardized ground motion sets


http://peer.berkeley.edu/transportation/gm_peer_transportation.html

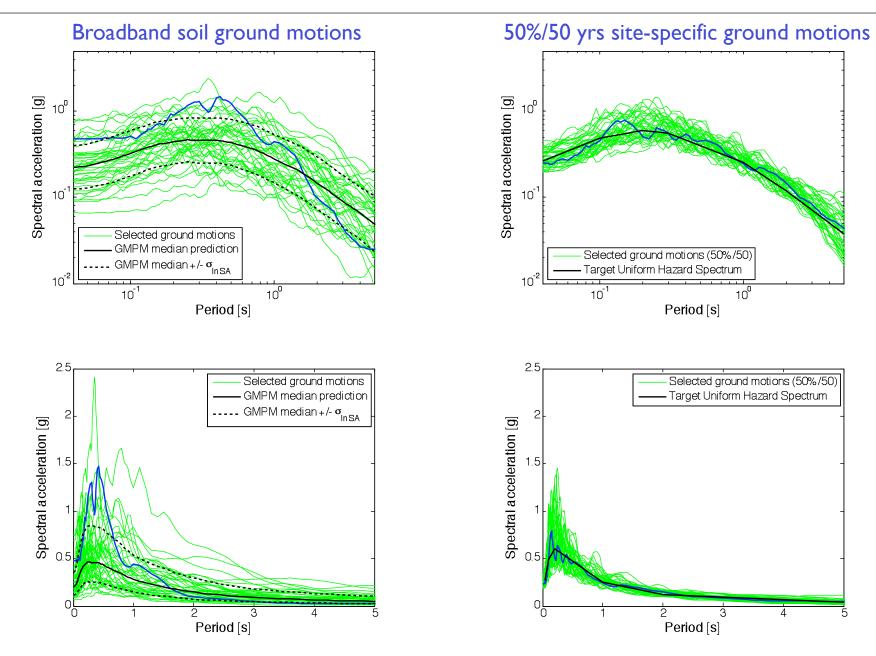

Broadband ground motions

- Selected to match the median and variability in response spectra associated with an M = 7, R = 10 km strike slip earthquake
- Separate sets are provided for soil and rock conditions ($V_{s30} = 250$ m/s and 760m/s)
 - Recordings from appropriate sites
 - Target spectra account for site conditions
- This required development of a new ground motion selection algorithm:

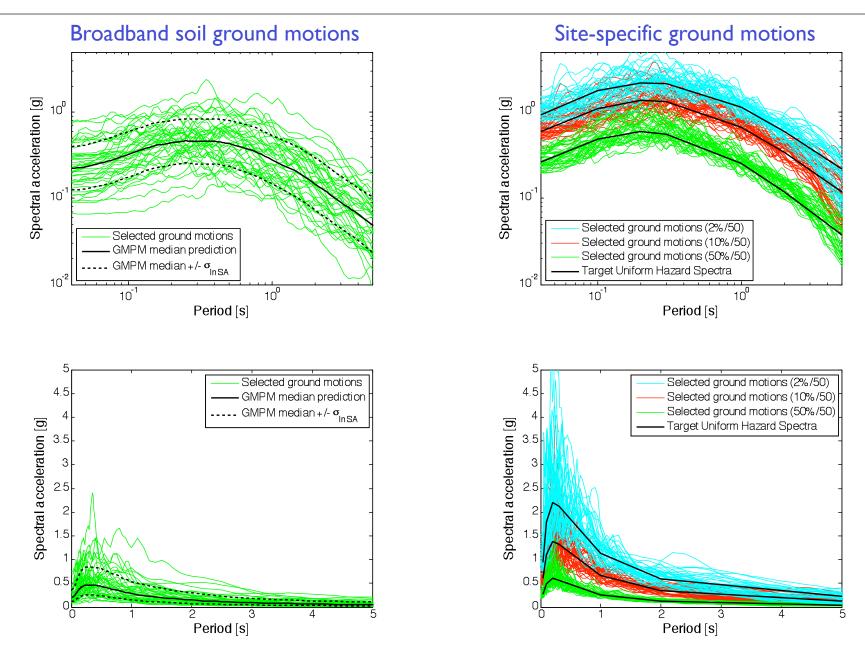
Jayaram, N., Lin, T., and Baker, J. W. (2010). "A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance." *Earthquake Spectra*, (in press).

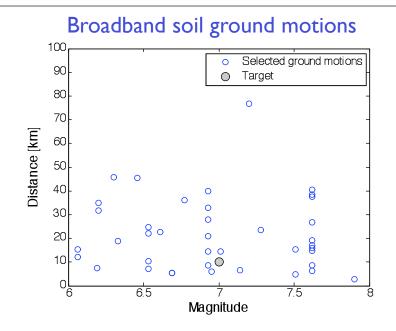


Site-specific ground motions for Oakland I-880 Viaduct

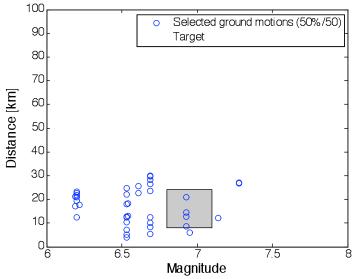


GAL 2010 Ltl 14 21 57 21 Dist


Comparison of ground motions


Comparison of ground motions

Comparison of ground motion spectra

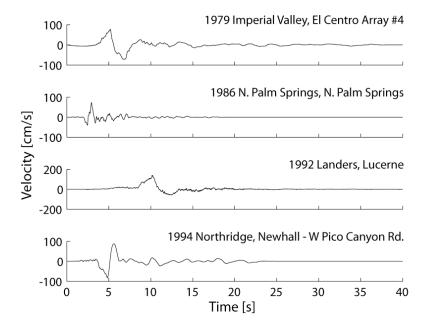

Comparison of other ground motion properties

Other properties

- Variability included
- No scaling
- Velocity pulses not specifically included or excluded

50%/50 yrs site-specific ground motions

Other properties


- No variability desired in spectra or other properties
- Scaled to match targets
- Velocity pulses included in proportion to expected occurrence at the site of interest

Another set of ground motions: near-fault motions with pulses

Set #3: Pulse-like ground motions

See the report above for background regarding the selection of these ground motions. Further information on the technique used to identify these ground motions is available here.

- Spreadsheet documenting the properties of the selected pulse-like ground motions. (Excel file 1.75 MB)
- Zip file containing acceleration and velocity time histories for the 40 selected pulse-like ground motions. Strike-normal, strikeparallel and vertical components are included. Separate sets of these time histories are provided for the original ground motions, extracted pulses, and residual ground motions. (Zip file - 16.2 MB)
- Link to web page listing selected pulse-like ground motions, and providing plots of pulse indicators and peak ground velocities for arbitrary horizontal orientations.
- Forty ground motions with strong velocity pulses in the fault-normal component are provided
- The pulse periods are tabulated
- Extracted pulses are provided separately

Provided data: summary metadata

	А	В	С	D	E	F	G	Н	1	J	К	L
		NGA Record								Assumed Fault		
	Record	Sequence					Hypocentral	Closest	Preferred	Normal		
1	number	Number	Earthquake Name	Year	Station	Magnitude	Distance	Distance	Vs30 (m/s)	Orientation	Filename_Vertical	Filename_FN
2	1	231	'Mammoth Lakes-01'	1980	'Long Valley Dam (Upr L Abut)'	6.06	15.52	15.46	345.4	282	'M7_soil_UP_1.acc'	'M7_soil_FN_1.
3	2	1203	'Chi-Chi, Taiwan'	1999	'CHY036'	7.62	44.74	16.06	233.1	292	'M7_soil_UP_2.acc'	'M7_soil_FN_2.
4	3	829	'Cape Mendocino'	1992	'Rio Dell Overpass - FF'	7.01	24.55	14.33	311.8	260	'M7_soil_UP_3.acc'	'M7_soil_FN_3.
5	4	169	'Imperial Valley-06'	1979	'Delta'	6.53	35.17	22.03	274.5	233	'M7_soil_UP_4.acc'	'M7_soil_FN_4.
6	5	1176	'Kocaeli, Turkey'	1999	'Yarimca'	7.51	25.07	4.83	297	180	'M7_soil_UP_5.acc'	'M7_soil_FN_5.
7	6	163	'Imperial Valley-06'	1979	'Calipatria Fire Station'	6.53	58	24.6	205.8	233	'M7_soil_UP_6.acc'	'M7_soil_FN_6.
8	7	1201	'Chi-Chi, Taiwan'	1999	'CHY034'	7.62	46.82	14.82	378.8	292	'M7_soil_UP_7.acc'	'M7_soil_FN_7.
9	8	1402	'Chi-Chi, Taiwan'	1999	'NST'	7.62	89.2	38.43	375.3	306	'M7_soil_UP_8.acc'	'M7_soil_FN_8.
10	9	1158	'Kocaeli, Turkey'	1999	'Duzce'	7.51	99.52	15.37	276	163	'M7_soil_UP_9.acc'	'M7_soil_FN_9.
11	10	281	'Trinidad'	1980	'Rio Dell Overpass, E Ground'	7.2	78.22	-	311.8	319	'M7_soil_UP_10.acc'	'M7_soil_FN_10
12	11	730	'Spitak, Armenia'	1988	'Gukasian'	6.77	36.68	-	274.5	212	'M7_soil_UP_11.acc'	'M7_soil_FN_11
13	12	768	'Loma Prieta'	1989	'Gilroy Array #4'	6.93	36.79	14.34	221.8	38	'M7_soil_UP_12.acc'	'M7_soil_FN_12
14	13	1499	'Chi-Chi, Taiwan'	1999	'TCU060'	7.62	46.07	8.53	272.6	278	'M7_soil_UP_13.acc'	'M7_soil_FN_13
15	14	266	'Victoria, Mexico'	1980	'Chihuahua'	6.33	38.29	18.96	274.5	228	'M7_soil_UP_14.acc'	'M7_soil_FN_14
16	15	761	'Loma Prieta'	1989	'Fremont - Emerson Court'	6.93	57.86	39.85	284.8	38	'M7_soil_UP_15.acc'	'M7_soil_FN_15
17	16	558	'Chalfant Valley-02'	1986	'Zack Brothers Ranch'	6.19	17.47	7.58	271.4	58	'M7_soil_UP_16.acc'	'M7_soil_FN_16
18	17	1543	'Chi-Chi, Taiwan'	1999	'TCU118'	7.62	44.49	26.84	215	271	'M7_soil_UP_17.acc'	'M7_soil_FN_17
19	18	2114	'Denali, Alaska'	2002	'TAPS Pump Station #10'	7.9	84.89	2.74	329.4	199	'M7_soil_UP_18.acc'	'M7_soil_FN_18
20	19	179	Imperial Valley-06	1979	'El Centro Arrav #A'	6 52	28 Q	7 05	208 8	255	'M7 coil IID 19 acc'	'M7 coil EN 19

Provided data: documentation of metadata

	А	В	С	D	E	F	G	Н	1
1	PEER broadband ground motio	ns for so	oil sites						
2	Prepared by Nirmal Jayaram ar	nd Jack E	Baker, St	anford L	Jniversit	tv			
3	November 15, 2009					1			
4	10000110,2000								
5	This spreadsheet provides documentat	ion for the	PFFR "soil	broadban	d" ground	motions, A	brief des	cription of	the include
6					8.04.10				
	These ground motions were selected so	o that thei	r response	spectra m	atch the m	nedian and	log standa	rd deviatio	ns predict
8	Magnitude = 7 earthquake						0		
9	Source-to-site distance = 10 km								
10	Site Vs30 = 250 m/s								
11	Earthquake mechanism = strike slip								
12	Response spectra predictions from t	he Boore a	and Atkinso	on (2008) g	round mo	tion model			
13									
14									
15	"Records" Worksheet								
16	This worksheet provides basic summar	y data rega	rding the s	elected g	round mot	ions. Colun	nns are de	fined as fo	lows:
17									
18	Record number	Numberir	ng for the s	elected gr	ound mot	ions. This m	atches the	e numberir	ng of the ti
19	NGA Record Sequence Number	The corre	sponding r	ecord sequ	uence nun	nber from t	he NGA Fla	atfile at htt	p://peer.b
20	Earthquake Name	Earthquak	ke name, fr	om NGA F	latfile				
21	Year	Year of ea	rthquake						
22	Station	Name of a							
		Name of s	station whe	ere ground	d motion w	as recorde	d, from NG	GA Flatfile	
23	Magnitude		station whe magnitude	-		/as recorde	d, from NG	GA Flatfile	
		Moment		of earthq	uake		d, from NG	GA Flatfile	
23	Magnitude	Moment r Distance f	magnitude from the re	of earthque cording si	uake te to hypo				2)
23 24	Magnitude Hypocentral Distance	Moment r Distance f Closest di	magnitude from the re	of earthqu cording si n the reco	uake te to hypo irding site	center.			2)
23 24 25	Magnitude Hypocentral Distance Closest Distance Preferred Vs30 (m/s)	Moment r Distance f Closest di Preferred	magnitude from the re stance from Vs30 from	of earthque cording si n the reco NGA Flatf	uake te to hypo ording site ile	center.	ured area ((if available	
23 24 25 26	Magnitude Hypocentral Distance Closest Distance Preferred Vs30 (m/s)	Moment r Distance f Closest di Preferred Assumed	magnitude from the re stance froi Vs30 from fault-norm	of earthque cording si m the reco NGA Flatf nal orienta	uake te to hypo ording site ile tion, used	center. to the rupt	ured area (g ground n	(if available	
23 24 25 26 27	Magnitude Hypocentral Distance Closest Distance Preferred Vs30 (m/s) Assumed Fault Normal Orientation	Moment r Distance f Closest di Preferred Assumed Filename	magnitude from the re istance from I Vs30 from fault-norm for the ver	of earthque cording si m the reco NGA Flatf nal orienta tical comp	uake te to hypo irding site ile tion, used ponent of t	center. to the ruption for rotating	ured area (g ground n motion	(if available	
23 24 25 26 27 28	Magnitude Hypocentral Distance Closest Distance Preferred Vs30 (m/s) Assumed Fault Normal Orientation Filename_Vertical	Moment r Distance f Closest di Preferred Assumed Filename Filename	magnitude from the re istance from Vs30 from fault-norm for the ver for the fau	of earthque cording si m the reco NGA Flatf nal orienta tical comp lt normal	uake te to hypo rding site iile tion, used ponent of f componer	center. to the rupto for rotating the ground	ured area (g ground n motion ound motio	(if available notions to f	
23 24 25 26 27 28 29	Magnitude Hypocentral Distance Closest Distance Preferred Vs30 (m/s) Assumed Fault Normal Orientation Filename_Vertical Filename_FN	Moment r Distance f Closest di Preferred Assumed Filename Filename	magnitude from the re istance from Vs30 from fault-norm for the ver for the fau	of earthque cording si m the reco NGA Flatf nal orienta tical comp lt normal	uake te to hypo rding site iile tion, used ponent of f componer	center. to the rupto for rotating the ground at of the gro	ured area (g ground n motion ound motio	(if available notions to f	
23 24 25 26 27 28 29 30	Magnitude Hypocentral Distance Closest Distance Preferred Vs30 (m/s) Assumed Fault Normal Orientation Filename_Vertical Filename_FN	Moment r Distance f Closest di Preferred Assumed Filename Filename	magnitude from the re istance from Vs30 from fault-norm for the ver for the fau	of earthque cording si m the reco NGA Flatf nal orienta tical comp lt normal	uake te to hypo rding site iile tion, used ponent of f componer	center. to the rupto for rotating the ground at of the gro	ured area (g ground n motion ound motio	(if available notions to f	
23 24 25 26 27 28 29 30 31	Magnitude Hypocentral Distance Closest Distance Preferred Vs30 (m/s) Assumed Fault Normal Orientation Filename_Vertical Filename_FN Filename_FP	Moment r Distance f Closest di Preferred Assumed Filename Filename Filename	magnitude from the re istance from Vs30 from fault-norm for the ver for the fau for the fau	of earthque cording si m the reco NGA Flatf nal orienta tical comp lt normal lt parallel	uake te to hypo rding site file tion, used ponent of t componer	center. to the rupti for rotating the ground at of the gro nt of the gro	ured area (g ground n motion ound motio ound moti	(if available notions to f	
23 24 25 26 27 28 29 30 31 32	Magnitude Hypocentral Distance Closest Distance Preferred Vs30 (m/s) Assumed Fault Normal Orientation Filename_Vertical Filename_FN Filename_FP "Response spectra" worksheet	Moment r Distance f Closest di Preferred Assumed Filename Filename sof g) are	magnitude from the re istance from fault-norm for the ver for the fau for the fau provided h	of earthque cording si m the reco NGA Flatf nal orienta tical comp lt normal lt parallel ere for the	uake te to hypo rding site file tion, used ponent of t componer componer e 40 select	center. to the ruption for rotating the ground at of the ground of the ground ed ground	g ground n motion ound motio ound motio ound motions	(if available notions to f on on	ault-norm
23 24 25 26 27 28 29 30 31 32 33	Magnitude Hypocentral Distance Closest Distance Preferred Vs30 (m/s) Assumed Fault Normal Orientation Filename_Vertical Filename_FN Filename_FP "Response spectra" worksheet Tabulated response spectra (in unit	Moment r Distance f Closest di Preferred Assumed Filename Filename Filename ric mean o	magnitude from the re stance from fault-norm for the ver for the fau for the fau provided h	of earthque cording si m the reco NGA Flatf nal orienta tical comp lt normal it parallel ere for the normal ar	uake te to hypo rding site tile tion, used ponent of t componer componer e 40 select nd fault-pa	center. to the ruption for rotating the ground at of the ground at of the ground red ground of rallel comp	g ground n motion ound motio ound motio ound motions motions	(if available notions to f on on ne GMRotI5	ault-norm

Provided data: response spectra

Target spectra, spectra for each horizontal component of each ground motion, geometric mean spectra, GMRotI50 spectra

	Period (s)	→															
	0.01	0.02	0.022	0.025	0.029	0.03	0.032	0.035	0.036	0.04	0.042	0.044	0.045	0.046	0.048	0.05	0.055
ledian	0.199915	0.204768	0.207176	0.210451	0.214319	0.215212	0.217075	0.219688	0.220516	0.223641	0.225103	0.226506	0.227186	0.227854	0.229153	0.230406	0.240183
og Standard deviation	0.566	0.566	0.568351	0.571503	0.575164	0.576	0.577642	0.579923	0.58064	0.583321	0.584563	0.585747	0.586319	0.586878	0.587961	0.589	0.592996
eometric mean of FM	/FP compor	nents															
	Period (s)		0.022	0.025	0.020	0.02	0.022	0.025	0.025	0.04	0.042	0.044	0.045	0.046	0.040	0.05	0.055
ecord #	0.01	0.02	0.022	0.025	0.029	0.03	0.032	0.035	0.036	0.04	0.042	0.044	0.045	0.046	0.048	0.05	0.055
ecoru #	2 0.256526		0.256273	0.354957		0.348133						0.263563				0.275127	
•	0.481281			0.230437			0.481281			0.233704		0.205505		0.207079	0.200330		0.275580
			0.280105					0.283872				0.285557			0.28879	0.29038	0.28836
		0.295518					0.298639		0.296478	0.302845		0.312762			0.313117	0.31425	0.312129
	5 0.10198		0.101592			0.102424		0.104895		0.109267		0.111267		0.110025	0.105267	0.113478	
			0.312953		0.314632			0.317871									
	8 0.40282	0.40062	0.400505	0.402488		0.404732											
	0.326152	0.325907	0.325925	0.326134	0.326391	0.326497	0.326706	0.326755	0.327022	0.3283	F		• •				
1	0.14715	0.146179	0.146584	0.146941	0.147305	0.147133	0.148214	0.148941	0.150435	0.1538	ŀ						
1	0.205186	0.205186	0.20483	0.205468	0.205993	0.205888	0.205485	0.20472	0.204091	0.2053					\backslash		
1	0.299604	0.299372	0.299289	0.299407	0.299624	0.299554	0.300031	0.300601	0.300656	0.3015	<u> </u>			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\wedge \sim$	\sim	
1	3 0.151939	0.151822	0.151776	0.151871	0.152045	0.152109	0.152499	0.153633	0.153479		<u>6</u> 10 ⁰			$\beta \leq \lambda$	\sim	Da L	\sim
1	4 0.118765	0.118765	0.118423	0.118549	0.118938	0.119183	0.121213	0.119359	0.118646	0.1181		A A				ATTA	
1	5 0.158686	0.158104	0.158171	0.158369	0.158746	0.158986	0.159429	0.160018	0.159231	0.1600	celera	7 A					
1	0.399877	0.398091	0.398842	0.399692	0.399569	0.401318	0.404694	0.405034	0.407835	0.4531	ele						11 C C B
1			0.102605			0.103264		0.106262			ë i		A A				ALMONT
1			0.308157	0.308372	0.3089		0.309621				<u></u>				-lex		
1					0.414479			0.417732		0.4330		ZA	~ ~ ~	\sim		No the	K L K
2		0.090349			0.090747		0.09033		0.089974	0.0895							AP AV
2					0.223681		0.223681		0.223681		spe		ologtod g	round mo	tiona		L Sta
2					0.692428		0.69601		0.702941	0.7250			0	round mo			7 😡
2		0.199549			0.193373 0.226173		0.208143	0.205781	0.208109	0.207	-			dian prec			\sim
Z	+ 0.222039	0.225079	0.222043	0.222003			0.227089				10 ⁻²	G	IVIPIVI me	edian+/- o	InSA		\ \

Provided data: prediction residuals (ε 's)

Residuals for each horizontal component of each ground motion, geometric mean residuals, GMRotI50 residuals

	А	В	С	D	E	F	G	Н	I.	J	К	L	М	N	0	Р	Q	R	S
1 0	GMRotI50	residuals																	
2																			
3			Period (s)	→															
4			0.01	0.02	0.022	0.025	0.029	0.03	0.032	0.035	0.036	0.04	0.042	0.044	0.045	0.046	0.048	0.05	0.055
5 I	Record #	1	1.97599	2.070995	2.107328	2.133792	2.268485	2.264258	2.290807	2.375892	2.384202	2.44911	2.433508	2.440995	2.418731	2.363295	2.319344	2.302782	2.0566
6	\downarrow	2	0.486193	0.451764	0.431063	0.403145	0.368597	0.363014	0.363094	0.358379	0.356964	0.354741	0.366257	0.368917	0.35803	0.346177	0.329944	0.334088	0.29143
7		3	0.735945	0.681398	0.644476	0.612724	0.578367	0.572789	0.550655	0.519224	0.502694	0.479805	0.464017	0.457296	0.453384	0.439635	0.453737	0.492788	0.555183
8		4	1.300931	1.237977	1.225957	1.219205	1.23871	1.225673	1.159056	1.098496	1.118901	1.289841	1.273631	1.267167	1.288469	1.316971	1.369583	1.378079	1.367975
9		5	-0.78333	-0.84425	-0.85348	-0.87534	-0.92296	-0.92686	-0.95437	-0.95518	-0.95802	-1.00704	-1.05128	-1.05249	-1.06071	-1.07274	-1.09393	-1.11783	-1.18837
10		6	-0.14199	-0.12651	-0.15622	-0.13928	-0.1176	-0.10238	-0.09282	-0.1063	-0.11006	-0.23877	-0.21774	-0.19206	-0.19826	-0.21574	-0.26199	-0.23943	-0.13662
11		7	0.233761	0.183758	0.165135	0.146196	0.122239	0.114758	0.107052	0.110913	0.108094	0.085341	0.037483	0.029745	0.043959	0.049853	0.056213	0.079002	0.008242
12		8	1.510041	1.494026	1.48228	1.443004	1.424093	1.413672	1.397859	1.678843	1.729997	1.797458	1.945948	1.951417	1.971431	2.018063	2.017882	2.067098	1.88636
13		9	0.522818	0.47122	0.447837	0.417461	0.38338	0.375982	0.358788	0.338627	0.335666	0.299286	0.286664	0.288526	0.290181	0.289967	0.280358	0.265415	0.195892
14		10	-2.27889	-2.33414	-2.34227	-2.35612	-2.40135	-2.38173	-2.34788	-2.37924	-2.41711	-2.40393	-2.40016	-2.40641	-2.40926	-2.42579	-2.49936	-2.49599	-2.42422
15		11	-1.32024	-1.38842	-1.41169	-1.43918	-1.45526	-1.46258	-1.50497	-1.47041	-1.45366	-1.50384	-1.47603	-1.40943	-1.38615	-1.35779	-1.33381	-1.38298	-1.51601
16		12	1.187741	1.163378	1.142551	1.113136	1.083127	1.077495	1.063882	1.058017	1.053659	1.042713	1.030986	1.018672	1.01514	1.030052	1.031116	1.021673	0.918118
17		13	-1.07112	-1.12879	-1.14174	-1.17062	-1.18895	-1.19568	-1.19722	-1.20885	-1.22394	-1.23503	-1.23672	-1.2589	-1.27386	-1.27667	-1.27273	-1.25109	-1.19657
18		14	-0.21494	-0.26644	-0.2849	-0.30823	-0.32812	-0.32738	-0.34619	-0.3875	-0.40363	-0.37953	-0.35543	-0.32506	-0.31727	-0.30186	-0.28078	-0.30671	-0.27293
19		15	0.514009	0.495334	0.485394	0.475418	0.457539	0.452002	0.438012	0.446635	0.454069	0.440093	0.409785	0.378085	0.367021	0.375302	0.403693	0.45424	0.46368
20		16	1.395846	1.340358	1.300194	1.27672	1.237066	1.220102	1.20273	1.230885	1.230001	1.159907	1.170015	1.176666	1.206106	1.232247	1.283432	1.280826	1.244816
21		17	-0.91818	-0.92369	-0.93212	-0.9212	-0.95125	-0.92991	-0.92706	-0.88071	-0.87041	-0.87116	-0.86617	-0.86042	-0.8579	-0.85925	-0.83398	-0.82675	-0.70842
22		18	-0.92945	-0.99266	-1.02075	-1.0581	-1.09576	-1.10417	-1.12432	-1.15438	-1.16318	-1.18921	-1.19694	-1.21032	-1.22159	-1.23207	-1.25234	-1.25186	-1.31028
23		19	1.469576	1.456961	1.443438	1.368229	1.373531	1.360512	1.30844	1.40758	1.434034	1.455144	1.468871	1.488405	1.46694	1.493776	1.51584	1.509781	1.331671
24		20	-2.62177	-2.71292	-2.74078	-2.77002	-2.81064	-2.81747	-2.83825	-2.88457	-2.89744	-2.8657	-2.85108	-2.83281	-2.84377	-2.87769	-2.92762	-2.87881	-2.78517
25		21	0.288527	0.252802	0.239339	0.191585	0.183458	0.173882	0.140137	0.117694	0.107578	0.078925	0.069284	0.055011	0.051232	0.05182	0.067549	0.066947	-0.01511
26		22	1.19644	1.155275	1.122752	1.081215	1.043309	1.040496	1.03752	1.074056	1.116071	1.102362	1.037316	1.049809	1.014076	0.998844	1.033103	1.012551	0.906702
27		23	0.634736	0.603527	0.614632	0.664042	0.7132	0.686877	0.734199	0.728692	0.768508	0.559884	0.646773	0.805793	0.850958	0.869931	0.859695	0.850864	0.739682
28		24	-0.35518	-0.39143	-0.45813	-0.45688	-0.54053	-0.55049	-0.544	-0.57602	-0.57438	-0.62122	-0.67273	-0.63532	-0.64555	-0.63976	-0.64228	-0.68703	-0.75054
29		25	1.090358	1.056733	1.039379	1.016155	0.990562	0.986125	0.969361	0.958165	0.953237	0.921685	0.906657	0.896438	0.891137	0.885443	0.872209	0.867713	0.809944
30		26	-0.53864	-0.59284	-0.59212	-0.63533	-0.66949	-0.65704	-0.63095	-0.58815	-0.59114	-0.62891	-0.61847	-0.57786	-0.53794	-0.51519	-0.5638	-0.61349	-0.60594

Provided data: draft summary reports

Documentation of targets, selection methodology and summary data for each selected set (2 reports, 34 pages total)

DRAFT

PEER site-specific ground motions for Oakland: record selection notes

Jack Baker July 14th, 2010

1. Location

These site-specific ground motions were selected to be representative of the hazard at the site of the I880 viaduct in Oakland, California. The viaduct runs from near the intersection of Center and 3rd Streets to Market and 5th Streets¹. Those locations are noted in Figure 1 below. For the hazard analysis used here, a location of 37.803N x 122.287W was used, and this location is labeled "Oakland site" in Figure 1.

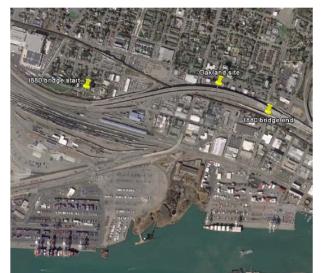


Figure 1: Location of I880 bridge viaduct

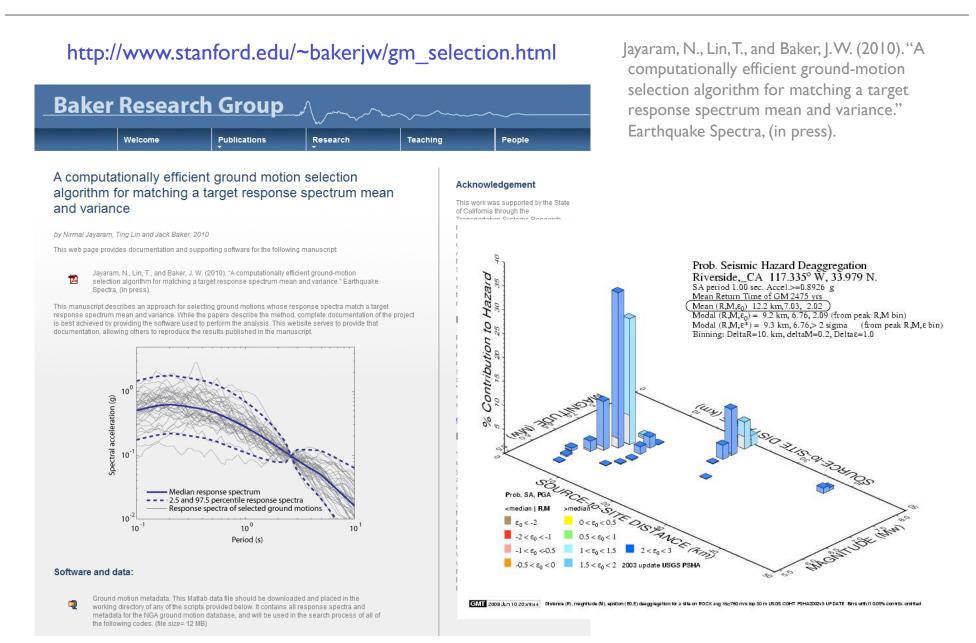
¹ Locations, including associated latitudes and longitudes, were taken from

Draft Documentation of Standardized Ground Motions for the PEER Transportation Research Program

Jack Baker, Nirmal Jayaram and Shrey Shahi

January 21st, 2010

1. Introduction


Efforts in recent decades to understand the properties of earthquake ground motions that affect geotechnical and structural systems have led to insights for structure specific ground motion selection in performance-based earthquake engineering. Current practice selects ground motions whose intensity (measured by an Intensity Measure or IM) is exceeded with some specified probability at a given site, and whose other properties are also appropriate (as typically determined by probabilistic seismic hazard and deaggregation calculations). See, e.g., [1-8] among many others for progress and recommendations on structure-specific ground motion selection.

Research on this topic has been focused primarily on cases where the structure and location of interest is known (so that ground motions can be selected and modified with specific structural properties and seismic hazard information in mind). The PEER Transportation Research Program (peer.berkeley.edu/transportation/), in contrast, is studying a wide variety of structural and geotechnical systems at a wide range of locations, and would benefit from having a standardized set of ground motions to facilitate comparative evaluations in this research. Even in situations where a specific location might be of interest, the Transportation Research Program is sometimes evaluating alternative structural systems (with differing periods of vibration) for potential use at a given location, so that ground motion selection techniques which depend upon knowledge of structural periods are not applicable. Other techniques are thus needed to choose "appropriate" ground motion sets for this Research Program. This document describes the process that was used to select three standardized ground motion sets for PEER and documents the properties of the selected ground motions. Because the ground motions are not structure-specific or sitespecific, it may be useful for the user to pre-process these ground motions prior to using them for structural analysis (e.g., by scaling the motions) or to post-process the structural analysis results (e.g., to identify trends in structural response as a function of ground motion intensity parameters). A companion document is in preparation that will describe pre-processing and postprocessing techniques that may be of use for users. The selected ground motions described in this report, and some additional descriptive data for these motions, are available electronically at www.stanford.edu/~bakerjw/PEER_gms.html.

2. Objectives

The goal of this project is to select several standardized sets of ground motions that can be used in the PEER Transportation Research Program, for use in analyzing a variety of structural and geotechnical systems that would potentially be located in active seismic regions such as California. Because of the wide variety of uses for these ground motions, it is not feasible to use the site-specific/structure-specific ground motion selection methods most frequently proposed in

A related resource: source code for CMS ground motion selection

Project status

- Completed work:
 - A new ground motion selection algorithm that captures response spectrum variability has been developed and published
 - Broadband soil and rock ground motions are selected and posted (80 records)
 - Near-fault pulse-like motions are selected and posted (40 records)
 - Site-specific ground motions for Oakland are selected and posted (120 records)
 - Draft documentation for all ground motions is complete and posted
 - Adaptive Incremental Dynamic Analysis using M/R selection has been schematically developed (presented as 2009 PEER AM poster)
- Next steps:
 - A lower-intensity broadband set will be selected (40 records)
 - A second site-specific set may be selected (120 records)
 - Adaptive Incremental Dynamic Analysis using CMS concepts will be implemented
- By December
 - A PEER report documenting the ground motions and discussing the use of generic ground motion sets for PBEE will be completed
- We are on schedule and on budget for December 2010 completion