PEER Tall Building Seismic Design Guidelines

Analysis, Modeling and Acceptance Criteria

Ronald O. Hamburger

Senior Principal Simpson Gumpertz & Heger Inc.

November 30, 2010

SEAW

Purpose of Analysis

- Demonstrate that the design is capable of acceptable performance
- Two performance objectives considered:
 - Service Level
 - Maximum Considered Level

Service Level Analysis

Performance Goal:

- Minor structural damage
 - Does not compromise structure's safety
 - Repair not required for occupancy
 - Repair may be desirable for:
 - Appearance
 - Durability, moisture and fire resistance

Acceptable Damage

For a limited number of elements:

- Minor cracking of concrete
- Minor yielding of steel

Unacceptable behavior

- Permanent cracks exceeding 1/8"
- Spalling of cover or core concrete
- Buckling of steel member or rebar
- Measurable residual drift
- Punching of slab-column joints

Service Level Analysis

- Linear response spectrum analysis (RSA) required
 - Appropriate to response anticipated at this performance level
 - Provides benchmark for later analyses using nonlinear models

 Nonlinear response history analysis can be run as a supplement, to demonstrate acceptability when RSA does not so indicate

What should be modeled?

- Intended lateral system
 - From base to penthouse
- Any element that effects stiffness or can be damaged by response
 - Gravity columns
 - Slabs
 - Gravity beams
 - Basement walls

Soil-Structure-Foundation Interaction

Need not be considered

But-

- Model must extend to soil-structure interface
 - Typically top of mat
- Include basement walls and slabs
- Include mass of basement levels

Torsion

- Inherent (natural) torsion must be modeled
- Accidental torsion neglected

Element Stiffness

Models must include reasonable representation of stiffness

C o mp on e nt	Flexural Rigidity	Shear Rigidity	Axial Rigidity	
Structural steel Beams, Columns and Braces	Ē	G _s A	E _s A	
Composite Concrete Metal Deck Floors	$0.5E_c/_g$	$G_c A_g$	$E_c A_g$	
R/C Beams — nonsprestressed	0.5E _c / _a	$G_{c}A_{q}$	$\mathbf{E}_{c}\mathbf{A}_{q}$	
R/C Beams – prestressed	E_{g}/g	$G_c A_g$	$E_c A_g$	
R/C Columns	$0.5 \overline{E}_c I_q$	$G_c A_q$	$\mathbf{E}_{c}\mathbf{A}_{q}$	
R/C Walls	0.75E _c / _g	$G_c A_g$	$E_{c}A_{g}$	
R/C Slabs and Flat Plates	$0.5 E_c I_a$	$G_c A_a$	$E_c A_a$	
Notes:				
E_c shall be computed per ACI 318, using expected material strength per Table 7-1.				
G_c shall be computed as $E_c/(2(1+v))$, where v shall be taken as 0.2.				

Element Stiffness

Beam-column joints

- Explicit modeling of stiffness, or
- No rigid end offsets for beams

Element Stiffness

Diaphragms

- Use realistic assessments of stiffness
- Transfer diaphragms must be explicitly modeled

Load Combinations & Acceptance

 $Q = D + L_{exp} + 1.0E_X + 0.3E_Y$ $Q = D + L_{exp} + 0.3E_X + 1.0E_Y$ $L_{exp} = 0.25L$

$$Q < 1.5\phi C_n$$

Story Drift < 0.005h

C_n = nominal capacity (per code)
φ = resistance factor per ACI or AISC

Nonlinear Analysis

Use best estimates of stiffness and strength

Material	E×pected Strength		
Structural Steel			
Hot-rolled structural shapes and bars			
ASTM A36/A36M	1.5 <i>f</i> _v *		
ASTM A572/A572M Grade 42 (290)	$1.3 f_{v}$		
ASTM A992/A992M	$1.1 f_{v}$		
All other grades	1.1 f		
Hollow Structural Sections	, ,		
ASTM A500, A501, A618 and A847	1.3 f _v		
Steel Pipe			
ASTM A53/A53M	$1.4 f_{v}$		
Plates	$1.1 f_{v}$		
All other Products	$1.1 f_{v}$		
Reinforcing Steel	1.17 f _v		
Concrete	1.3 f _c		
f_y is used to designate specified yield strength of steel materials in this Guideline. It is			
equivalent to r_v used in AISC standards.			

Load Combinations & Acceptance

$$Q = D + L_{exp} + 1.0E_X + 1.0E_Y$$
$$L_{exp} = 0.25L$$

Story Drift < 0.005h

- Use minimum of 3 pairs of ground motions
- Demand based on max values from suite unless 7 or more pairs of motions used

Nonlinear Analysis

- Nonlinear behavior limited to deformation-controlled (ductile) actions
 - Deformations shall be within range that does not require repair to restore system strength, as demonstrated by laboratory testing
 - Repair, if required, shall not include:
 - Removal or replacement of concrete other than cover concrete
 - Removal or replacement of reinforcing or structural steel
 - ASCE 41 Immediate Occupancy values may be used
- Force-controlled (brittle) actions shall not exceed the expected strengths

Maximum Considered Level Analysis

Performance Goal:

- Minor implicit risk of collapse
- Modest residual drift
- Limited potential for failure of cladding

Pragmatically

Confirm that:

- Inelastic behavior occurs in favorable modes, envisaged by the design
- Excessive force and deformation demands do not result in undesirable behavioral modes
- Transient drifts remain within reliable range of model and analysis validity
- Residual drifts are not excessive
- Cladding is capable of sustaining anticipated drifts

Maximum Considered Level

- 3-D nonlinear response history analysis
- Ground motion input at structure base
- SSI Permitted but not required

Behavior Modeling

- If structural response approaches collapse levels, model must capture:
 - Monotonic behavior at deformation levels beyond peak (capping) strength
 - Hysteretic properties characterizing component behavior:
 - With cyclic degradation
 - Without cyclic degradation

Cyclic Degradation

Cylic Degradation

- 1. Explicit incorporation
- 2. Cyclic envelope
- 3. Factored monotonic
- 4. Monotonic

Explicit Modeling of Degradation

No limitations on use

Cyclic Envelope

 Deformations cannot exceed the backbone envelope established by test

Modified Monotonic

$$F_{p} = .9F_{p-mono}$$
$$\delta_{p} = 0.7\delta_{p-mono}$$
$$\delta_{u} = 0.5\delta_{u-mono}$$

Monotonic

 Max deformation limited to deformation at 0.8F_{u-mono}

Analysis References

ATC-72NIST Tech Brief

PEER

Maximum Considered Level

Acceptance Criteria

- Deformation controlled behavior modes associated with slow deterioration
- Force controlled rapid deterioration
 - Elements the failure of which could result in partial or total collapse
 - Elements the failure of which have minor consequences
- Story strength loss
- Peak transient drift
- Residual drift

Deformation Controlled Elements

 No criteria other than deformation demand in any analysis can not exceed valid range of modeling or δ_u.

Force-controlled elements

$$F_u \leq \phi F_{n,e}$$

$$F_u = 1.5\bar{F}$$
$$F_u = \bar{F} + 1.3\sigma \ge 1.2\bar{F}$$

- $\phi = 1$ for inconsequential failures
- \$\overline = applicable resistance factor from material standards otherwise

Story strength loss

 Deformation imposed on any story should not result in story shear strength loss of more than 20%

Transient and residual drift

Transient story drift

- Mean of 7 runs < 0.03</p>
- Maximum of any run < 0.045</p>
- Residual story drift
 - Mean of 7 runs < 0.01</p>
 - Maximum of any run < 0.015</p>

Lets Try to Avoid This

