P-Delta and Minimum Base Shear

Min. Base Shear

- $V = (0.8ZN_vI/R)W$ for drift limitation?
- Is it for ground motion uncertainty or "modeling" uncertainty or both?
- Let's say explicitly what it is for!
- Should be the same "enforcement" as for code-conforming structures
- If for modeling uncertainties and alternative design, then it belongs to Level 3 – if for collapse safety?

Collapse Safety + Drift ≡ P-Delta

P-Delta is controlled by

- P (large in lower stories)
- Delta but inelastic δ
- Collapse mechanism
- Length of post-yield "plateau"
- Effective post yield stiffness
- Deterioration
- Frame problem very diff. from wall problem

Pushover Deflection Profiles, without and with P-delta -- N = 18, T = 3.6 -- Frame

Global Pushover Curve, without and with P-Delta -- N = 18, T = 3.6 -- Frame

Global Pushover Curve, LA-20, without and with P-A

ROOF DRIFT ANGLE vs. NORMALIZED BASE SHEAR

Pushover (NEHRP '94 k=2 pattern): LA 20-Story, Pre-Northridge, M1, M1-NPD

Sensitivity to Strain Hardening, Pushover, LA-20

ROOF DRIFT ANGLE vs. NORMALIZED BASE SHEAR

Pushover: LA 20-Story, Pre-Northridge, Model M2, $\alpha = 0\%$, 3%, 5%, 10%

Elastic and Inelastic Stability Coefficient N = 18, T = 3.6 -- Frame

GLOBAL PUSHOVER CURVES

N=18, T₁=3.6, BH, Peak Oriented Model, LMSR-N, $^{\alpha}_{s}=0.03$, $^{\delta}_{c}/^{\delta}_{v}=Inf$, $^{\alpha}_{c}=N.A$, $^{\gamma}_{s,c,k,a}=Inf$, $^{\lambda}=0$

Effect of P-Delta on Median Collapse Capacity (Deteriorating Frame Systems)

EFFECT OF P- Δ ON MEDIAN [S $_{a,c}(T_1)/g]/\gamma$ N=Var, T $_1$ =Var, BH, Peak Oriented Model, LMSR-N, ξ =5%, α_s =0.03, δ_c/δ_v =4, α_c =-0.10, $\gamma_{s,c,k,a}$ =Inf, λ =0

Effect of P-Delta on Median Collapse Capacity (as function of base shear yield coefficient) Frames versus Walls (8-story)

So, what's the point?

- P-Delta, which is amplified by deterioration, causes collapse (not the only source)
- P-Delta effect is very sensitive and not straight forward to predict
- We should safeguard against prediction errors
- But min. base shear does not look like the right vehicle to do so
- In codes: establish a limit on $P\delta/(V_v h)$????

