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ABSTRACT 

A fully nonstationary stochastic model for strong earthquake ground motion is developed. The 

model employs filtering of a discretized white-noise process. Nonstationarity is achieved by 

varying the filter properties and modulating the intensity of the process in time. Separation of the 

spectral and temporal nonstationary characteristics of the process allows flexibility and ease in 

modeling and parameter estimation. The evolving intensity and time-varying frequency content 

of the process are characterized by a set of statistical measures including the mean-square 

intensity, the mean zero-level up-crossing rate, and a measure of the bandwidth. Model 

parameters are identified by matching these measures with those of a target accelerogram. Post-

processing of simulated ground motions by a second filter assures zero residual velocity and 

displacement, and improves the response spectral ordinates for long periods. 

By identifying the parameters of the stochastic model for a large sample of recorded 

accelerograms drawn from the NGA database, predictive equations are developed that 

empirically relate the model parameters to a set of earthquake and site characteristics. For 

specified earthquake and site characteristics, sets of the model parameters are generated that are 

used in the stochastic model to generate an ensemble of synthetic ground motions. The resulting 

synthetic acceleration, as well as corresponding velocity and displacement time-histories, 

captures the main features of real earthquake ground motions, including the evolving intensity, 

duration, spectral content, natural variability, and peak values. Furthermore, the statistics of their 

resulting elastic response spectra, i.e., the median and logarithmic standard deviation, closely 

agree with the values predicted by the NGA ground motion prediction equations. The synthetic 

motions can be used with or in place of recorded motions in seismic design and analysis, 

particularly in the context of performance-based earthquake engineering. 

The proposed method is extended to simulate the orthogonal horizontal components of 

ground motion for specified earthquake and site characteristics. This is achieved by taking 

advantage of the notion of principal axes directions, along which the two components are 

statistically independent, and by properly accounting for the correlations among the model 

parameters of the two components. 
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1 Introduction 

1.1 INTRODUCTION 

In the past decade, a major advancement in earthquake engineering research and practice has 

been the development of the concept and tools for performance-based earthquake engineering 

(PBEE) (Bozorgnia and Bertero 2004). While traditional building design codes are prescriptive 

and assure only minimum safety and serviceability requirements, PBEE attempts to consider the 

entire range of seismic hazards and structural behaviors in the context of minimizing overall risk 

and life-cycle cost. This range includes nonlinear behavior and even collapse of structures. 

Development of tools for such analysis (e.g., OpenSees; see http://opensees.berkeley.edu for the 

software and documentation by Mazzoni et al. [2006], or nonlinear structural analysis methods 

presented by Filippou and Fenves in Chapter 6 of Bozorgnia and Bertero [2004]) has been the 

focus of much research and development during the past decade. 

Two approaches are available for nonlinear dynamic analysis of structures subjected to 

earthquakes: (1) nonlinear response-history analysis by use of a selected set of ground motion 

time-histories (either recorded or synthetic) and (2) nonlinear stochastic dynamic analysis by use 

of a stochastic representation of the ground motion. Well-developed methods and tools are 

available for nonlinear response-history analysis, including the OpenSees software mentioned 

above. Stochastic methods are not as developed, but research in that direction is continuing (e.g., 

Li and Der Kiureghian [1995]; Au and Beck [2001a, 2003]; Franchin [2004]; Fujimura and Der 

Kiureghian [2007]; and Der Kiureghian and Fujimura [2009]). 

In the current PBEE practice, the input ground motion time-histories are selected from a 

database of ground motions recorded during past earthquakes, which are often modified to fit 

desired conditions. However, for many regions of the world and for many design scenarios of 

interest, the database of recorded motions is sparse or lacking. As a result, in practice, one is 

forced to significantly alter recorded motions, e.g., scale them by factors as large as 10 or 20 or 
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modify their frequency contents, in order to achieve the desired intensity or frequency 

characteristics. These modifications have raised concern about the validity of the approach, as 

the modified motions may not accurately represent real earthquake ground motions. As a result 

of this shortcoming, there has been increasing interest in methods for generation of synthetic 

ground motions for specified design scenarios.  

For stochastic dynamic analysis, there is need for a random process model of the 

earthquake ground motion. Many such models have been developed in the past (see the review in 

Section 1.4). However, for nonlinear stochastic dynamic analysis, it is essential that the 

stochastic model accurately reflects the evolving intensity and time-varying frequency content of 

the motion. Furthermore, the model should be of a form that facilitates nonlinear stochastic 

dynamic analysis. While several previously developed models provide adequate representation 

of the characteristics of real earthquake ground motions, for the most part they are of a form that 

makes their use in nonlinear stochastic dynamic analysis cumbersome. Moreover, for PBEE 

analysis, it is desirable to have a stochastic model that is parameterized in terms of information 

that is available to an engineer for a given design scenario. Such a model currently does not 

exist.  

This study attempts to fill the above-described gaps in PBEE. Specifically, it develops a 

stochastic model of earthquake ground motions that possesses the characteristics of real ground 

motions and that is described in terms of parameters that typically define a design scenario. The 

model can be used to generate realistic synthetic ground motions for nonlinear response-history 

analysis, or can be used directly for nonlinear stochastic dynamic analysis. The specific features 

and uses of the model are described in the following section.  

1.2 MAJOR RESULTS AND SIGNIFICANCE OF RESEARCH 

In this study, a stochastic model for characterization and simulation of earthquake ground motion 

time-histories is developed. Three potential applications of the proposed model in research and 

engineering practice are (1) generation of samples of synthetic ground motion components with 

specified statistical characteristics defining their evolving intensities and frequency contents;  

(2) generation of samples of synthetic ground motion components for a given design earthquake 

scenario defined in terms of a set of earthquake and site characteristics that are typically 
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available to a practicing engineer; and (3) representation of the components of earthquake 

ground motion as a vector random process in a form that facilitates nonlinear stochastic dynamic 

analysis by existing methods. The following paragraphs elaborate on these applications of the 

model developed in this study. 

The model developed in this study facilitates generation of synthetic earthquake ground 

motions with specified statistical characteristics. The specific statistical characteristics 

considered include the time-varying intensity of the motion as defined by the variance of the 

acceleration time-history, the effective duration of the motion measured between the time points 

at 5% and 95% of cumulative energy, and the evolving predominant frequency and bandwidth of 

the motion. These characteristics are key features of earthquake ground motions that are known 

to have significant influences on structural response, particularly in the nonlinear range, and on 

determination of damage induced by earthquakes. By generating synthetic motions with 

specified statistical characteristics and estimating the corresponding structural response, various 

parametric studies that investigate the effects of ground motion characteristics on structural 

response may be conducted. Furthermore, studies that determine the statistics of structural 

response to earthquake ground motions with specified statistical characteristics may be of 

interest. This is useful, for example, in the construction of structural fragility models, which 

defines the conditional probability of exceeding a given limit state as a function of a measure of 

the ground motion intensity. Another possibility is to generate synthetic motions with statistical 

characteristics similar to those of a recorded motion. One may view a recorded ground motion as 

one sample observation of all the possible ground motions with the specified statistical 

characteristics. An ensemble of ground motions consisting of a recorded motion and samples of 

synthetic motions with similar statistical characteristics may be used to determine the statistics of 

structural response to the ground motion process. 

The main advancement of the present study is to provide the capability to generate a suite 

of synthetic ground motion components for a future seismic event with specified earthquake and 

site characteristics, i.e., for a specified design scenario. The earthquake and site characteristics 

considered are the type of faulting, the earthquake magnitude, the source-to-site distance, and the 

shear-wave velocity of the local soil at the site. Most importantly, the variability exhibited by the 

suite of synthetic ground motions for the given set of earthquake and site characteristics is 

consistent with the variability observed in recorded ground motions for the same design scenario. 



 

4 

 

This consistency is essential for accurate estimation of the statistics of structural response and 

damage in the context of PBEE analysis. This capability is particularly useful for predicting 

future seismic loading in regions where recorded ground motions are lacking, as there is no need 

for previously recorded motions for generating the synthetics. This independence from recorded 

ground motions is achieved by developing predictive equations for the parameters of the 

stochastic ground motion model in terms of the earthquake and site characteristics. The 

predictive equations are developed empirically using a large data set of recorded earthquake 

ground motions taken from the widely used PEER NGA (Pacific Earthquake Engineering 

Research Center, Next Generation Attenuation of Ground Motions Project; see 

http://peer.berkeley.edu/smcat/) database.   

The model proposed in this study facilitates nonlinear stochastic dynamic analysis by 

several existing methods. Stochastic dynamic analysis provides the means for probabilistic 

assessment of seismic demand on structures when the input excitation is defined as a stochastic 

process. This type of analysis allows determination of various statistics of the structural 

response, such as the probability distributions of peak values, level-crossings, or the first-passage 

probability. Since failure usually occurs in the nonlinear range of structural behavior, nonlinear 

stochastic dynamic analysis methods are of particular interest in assessing the safety of structures 

and in PBEE. Recently, Fujimura and Der Kiureghian (2007) have developed a new method for 

nonlinear stochastic dynamic analysis, known as the Tail-Equivalent Linearization Method 

(TELM), that is computationally more efficient than a Monte Carlo simulation method and 

provides superior accuracy compared to the conventional equivalent linearization method. In a 

more recent paper, Der Kiureghian and Fujimura (2009) have demonstrated the utility of TELM 

for PBEE analysis. An essential step in TELM is discrete representation of the input excitation in 

terms of a set of standard normal random variables. The stochastic ground motion model 

proposed in this study has a form that satisfies this requirement so that it can be used in 

conjunction with TELM for nonlinear stochastic dynamic analysis. Of course the model can also 

be used with a number of other methods for nonlinear stochastic dynamic analysis as described, 

e.g., in Lutes and Sarkani (2004). 

The following section discusses the current practice in seismic load prediction and the 

role of the present study in advancing the field and in overcoming some of the shortcomings and 

challenges of the existing methods. 
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1.3 CURRENT PRACTICE OF SEISMIC LOAD PREDICTION 

One of the major obstacles in seismic assessment of structures is identification of future seismic 

loading. Problems arise from the limited number of previously recorded ground motions and the 

lack of such recordings for many earthquake scenarios and site locations. The problem of 

predicting appropriate ground motions for future seismic events is currently receiving a great 

deal of attention. Extensive research is being conducted on developing and evaluating ground 

motion prediction equations (GMPEs), also known as attenuation models, and on developing and 

evaluating methods for selecting and scaling (in both time and frequency domains) previously 

recorded ground motions. A recent study by Douglas and Aochi (2008) provides a survey of 

techniques for predicting earthquake ground motions for engineering purposes. 

Existing GMPEs (attenuation models), e.g., Campbell and Bozorgnia (2008), 

Abrahamson and Silva (2008), Boore and Atkinson (2008), Chiou and Youngs (2008), and Idriss 

(2008), are designed to predict measures of ground motion intensity for specified earthquake and 

site characteristics. Typical measures considered are peak ground motion values (i.e., peak 

ground acceleration, velocity, and displacement) and elastic response spectra as functions of the 

oscillator period and damping. More recently, GMPEs for inelastic response spectra have also 

been developed (Bozorgnia et al. 2010). These GMPEs are useful for linear response-spectrum 

analysis or crude nonlinear analysis, but not for response-history analysis, as they do not predict 

ground motion time-histories. Such simplified analysis methods have proven to be adequate for 

code-based design purposes. However, they are not adequate for PBEE analysis, which aims at 

accurately predicting structural behavior in grossly nonlinear domains and even collapse. With 

increasing computing power and the advent of nonlinear response-history dynamic analysis tools 

for PBEE, such as OpenSees, the need for predicting ground motion time-histories for specified 

design scenarios has become urgent. This issue is addressed in the present study. In this sense, 

the present study complements GMPEs by providing models for predicting ground motion time 

histories for specified design scenarios.  

In the current PBEE practice, real recorded ground motions are used to perform response-

history dynamic analysis. Ground motion properties vastly vary for different earthquake and site 

characteristics, but recorded motions are not available for all types of earthquakes and in all 

regions. Due to scarcity of recorded motions, engineers are often forced to select records from 
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locations other than the project site and modify them by scaling or spectrum matching methods, 

see, e.g., Watson-Lamprey (2007), Bommer and Acevedo (2004), Hancock et al. (2006). These 

methods are often controversial as, without careful processing, they may easily render motions 

with unrealistic characteristics. On the other hand, because nonlinear structural response is 

sensitive to the characteristics of the seismic loading, care should be taken in realistic 

representation of the ground motion. To avoid selection of ground motions from inappropriate 

locations, with unreasonable scaling and spectrum matching, an alternative approach is to use 

synthetic motions with or in lieu of recorded motions. The trick, of course, is to make sure that 

these motions have characteristics that are representative of real earthquake ground motions. The 

present study develops a method for generating synthetic ground motions, which incorporate 

realistic representation of those features of the ground motion that are known to be important to 

the structural response. The proposed method is ideal for use in practice, since it is 

computationally straightforward and it requires information only on earthquake and site 

characteristics, which are readily available to the practicing engineer. 

1.4 EXISTING MODELS OF EARTHQUAKE GROUND MOTION 

There are two main categories of models for generating synthetic ground motions: models that 

describe the occurrence of fault ruptures at the source and propagation of the resulting seismic 

waves through the ground medium, and models that describe the ground motion for a specific 

site by fitting to a recorded motion with known earthquake and site characteristics. We refer to 

the first category as “source-based” models and to the second category as “site-based” models. 

Source-based models can produce realistic accelerograms at low frequencies (typically <1 Hz), 

but often need to be adjusted for high frequencies by combining with a stochastic or empirical 

component, resulting in “hybrid” models (Douglas and Aochi 2008). An early review of source-

based models is presented by Zerva (1988). In general, these models tend to heavily employ 

seismological principles to describe the source mechanism and wave travel path, and as pointed 

out by Stafford et al. (2009), they depend on physical parameters that vary significantly from 

region to region. This limits their use in regions where seismological data are lacking — exactly 

in places where there is an increased need for generation of synthetic ground motions. In the 

current practice, most engineers prefer using methods of scaling and spectrum matching of 
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recorded motions instead of incorporating source-based models. This is partly due to lack of 

understanding the seismological principles underlying these models, and that the models require 

a thorough knowledge of the source, wave path, and site characteristics, which typically are not 

available to a design engineer. In this study, we focus on developing a site-based stochastic 

model, which has advantages over existing models of this type, as described below. Furthermore, 

with the aim of developing a method that uses information readily available to the practicing 

engineer, the model parameters are directly related to the earthquake and site characteristics that 

define a design scenario.  

A large number of site-based stochastic ground motion models have been developed in 

the past. Formal reviews are presented by Liu (1970), Ahmadi (1979), Shinozuka and Deodatis 

(1988), and Kozin (1988). The paper by Conte and Peng (1997) presents a brief but 

comprehensive review of more recent work. To categorize the existing site-based stochastic 

models and to develop a model that overcomes their disadvantages, the following criteria are 

recognized. A good stochastic ground motion model must represent both the temporal and the 

spectral nonstationary characteristics of the motion. Temporal nonstationarity refers to the 

variation in the intensity of the ground motion over time, while spectral nonstationarity refers to 

the variation in the frequency content of the motion over time. Whereas temporal nonstationarity 

can be easily modeled by time-modulating a stationary process, spectral nonstationarity is not as 

easy to model. Nevertheless, this spectral nonstationarity is of particular importance in nonlinear 

response analysis because of the moving resonant effect (Papadimitriou 1990) of nonlinear 

structures and cannot be ignored. In addition, for a stochastic model to be of practical use in 

earthquake engineering, it should be parsimonious, i.e., it must have as few parameters as 

possible. Preferably, the model parameters should provide physical insight into the 

characteristics of the motion. Furthermore, the model should refrain from complicated analysis, 

involving extensive processing of recorded motions for parameter identification. 

Existing site-based stochastic ground motion models can be classified into four 

categories: (1) Processes obtained by passing a white noise through a filter, e.g., Bolotin (1960), 

Shinozuka and Sato (1967), Amin and Ang (1968), Iyengar and Iyengar (1969), Ruiz and 

Penzien (1971), with subsequent modulation in time to achieve temporal nonstationarity. These 

processes have essentially time-invariant frequency content. (2) Processes obtained by passing a 

train of Poisson pulses through a linear filter, e.g., Cornell (1960), Lin (1965). Through 
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modulation in time, these processes can possess both temporal and spectral nonstationarity (Lin, 

1986). However, matching with recorded ground motions is difficult. (3) Auto-regressive 

moving average (ARMA) models, e.g., Jurkevics and Ulrych (1978), Hoshiya and Hasgur 

(1978), Polhemus and Cakmak (1981), Kozin (1988), Chang et al. (1982), Conte et al. (1992), 

Mobarakeh et al. (2002). By allowing the model parameters to vary with time, these models can 

have both temporal and spectral nonstationarity. However, it is difficult to relate the model 

parameters to any physical aspects of the ground motion. (4) Various forms of spectral 

representation, e.g., Saragoni and Hart (1974), Der Kiureghian and Crempien (1989), Conte and 

Peng (1997), Wen and Gu (2004). The focus in these models is in developing a time-varying 

spectral representation by matching to a target recorded ground motion. These models require 

extensive processing of the target motion. Virtually all these models assume the ground motion 

to be a zero-mean Gaussian process. 

With the goal to achieve efficiency and convenience in modeling and simulation, similar 

to the models of the first category, the stochastic ground motion model developed in this study is 

based on a modulated filtered white-noise process. However, unlike previous models, the filter 

used in this study has time-varying properties, adjusted to capture the time-varying predominant 

frequency and bandwidth of a target accelerogram, thus allowing variation of the spectral content 

with time. Temporal nonstationarity is achieved by modulation in time, as is done in most 

previous studies.  

Two previous models are particularly relevant to the present study. One is the model by 

Yeh and Wen (1990), which is also a filtered white-noise process. They use a time-invariant 

filter; however, to achieve spectral nonstationarity, they modify the time scale through a 

nonlinear transformation. The model parameters are identified by matching the cumulative 

energy and zero-level up-crossings of the target motion. This approach for parameter 

identification is also used in the present work. The second is a model developed by 

Papadimitriou (1990), which is based on a second-order differential equation with time-varying 

properties and subjected to a modulated white-noise process (essentially a filtered white-noise 

process). Papadimitriou derives approximate expressions for the second-moment statistics of the 

process under conditions of slowly varying coefficients and wide bandwidth. This model can be 

seen as a special case of the model presented in this study (the filter in the present formulation 

can be more general). However, in the present work no approximations are made (other than 
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presenting the model in a discrete form) in deriving the model statistics, and no assumptions are 

made regarding the rate of change of the filter parameters or the bandwidth. Furthermore, the 

approaches to parameterization and fitting of the model are entirely different. In particular, the 

present model has the important advantage that the temporal and spectral nonstationary 

characteristics are completely decoupled, thus facilitating modeling and parameter identification. 

In general, site-based stochastic ground motion models fail to match the response 

spectrum associated with the target accelerogram in the long-period range, typically beyond 2 to 

4 s, e.g., see the review by Douglas and Aochi (2008). This is because a stochastic model 

developed for an acceleration process cannot guarantee zero velocity and displacement residuals 

(final values at the end of the record) upon integration of a sample realization. The model 

proposed in this study is no exception because it yields motions with non-zero velocity and 

displacement residuals and hence overestimates the response spectrum of a target motion at long-

period ranges. This shortcoming of site-based models has also been recognized by Papadimitriou 

(1990) and by Liao and Zerva (2006), who have extended baseline correction methods used for 

recorded accelerograms to simulated motions. Following a similar approach, we post-process the 

ground motion obtained from our stochastic model by high-pass filtering through a critically 

damped oscillator. In this way, we obtain zero velocity and displacement residuals and 

appropriate response spectrum values for periods as long as 5 to 10 s. 

Most existing site-based stochastic models limit their scope to generating synthetic 

motions similar to a target recorded ground motion and make no attempt in selecting an 

appropriate set of model parameters for a specified earthquake and site of interest. One of the 

few works that has addressed this issue is by Sabetta and Pugliese (1996). They relate their 

model parameters to the earthquake magnitude, source-to-site distance, and soil conditions, using 

empirical data from the Italian strong-motion database. They simulate nonstationary 

accelerograms by summation of Fourier series with random phases and time-dependent 

coefficients. The major shortcoming of their model is that the only source of variability 

considered is that inherent in the random phases. As a result, their model underestimates the 

variability inherent in real ground motions for specified earthquake and site characteristics. A 

more recent study by Stafford et al. (2009) also addresses the issue of developing relations 

between the model parameters and the earthquake and site characteristics, using the PEER NGA 

strong-motion database. However, this study models only the temporal nonstationarity of the 
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ground motion and is not suitable for nonlinear analysis in its current form. One of the novel 

aspects of our approach is that we relate the parameters of our model to earthquake and site 

characteristics. Furthermore, by accounting for the uncertainty in the model parameters, we 

capture the natural variability of real ground motions in the synthetics. This variability is 

explained in more detail below. 

A major problem with the current practice of seismic hazard analysis and generation of 

synthetic ground motions is related to underestimation of the ground motion variability. 

Abrahamson et al. (1990) divided the uncertainty in numerical simulation procedures into two 

categories: (1) modeling plus random uncertainty and (2) parametric uncertainty. Parametric 

uncertainty, which refers to the uncertainty in source parameters of future earthquakes, is often 

ignored in source-based models, causing underestimation of the total variability in the synthetic 

ground motions. Even though the focus of Abrahamson et al. is on source-based models, the 

same problem applies to site-based models, which, as pointed out by Douglas and Aochi (2008), 

“can underestimate the true ground motion variability.” This underestimation is mainly due to 

neglecting the uncertainty in the parameters of the stochastic model. Exceptions are the work by 

Pousse et al. (2006), in which the parameters of an improved version of the model by Sabetta and 

Pugliese (1996) are fitted to the K-Net Japanese database, and the work by Alamilla et al. (2001), 

in which the parameters of a model similar to that proposed by Yeh and Wen (1989) are fitted to 

a database of ground motions corresponding to the subduction zone lying along the southern 

coast of Mexico. In these cases, the model parameters are randomized to achieve the variability. 

It is noted that several recent seismological source-based models properly account for the 

variability in ground motions. Typically, this is done by varying the source parameters, as in Liu 

et al. (2006), Hutchings et al. (2007), Causse et al. (2008) and Ameri et al. (2009). In the present 

study, parametric uncertainty is accounted for by random generation of the model parameters 

from probability distributions conditioned on earthquake and site characteristics. Therefore, we 

are able to reproduce in the synthetics the variability present in real ground motions, which has 

been lacking in a majority of previous models. 

For proper dynamic analysis of complex structural systems, it is necessary to consider the 

ground motion at a site in three orthogonal directions. The vast majority of previous site-based 

models are restricted to single-component motions. In some studies, two horizontal components 

have been developed independently, using the same set of model parameters (e.g., Yeh and Wen 
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[1989]). In the present study, the stochastic ground motion model is developed for two horizontal 

components of the ground motion, properly accounting for the cross-correlations between the 

model parameters that control the intensities and the frequency contents of the two components. 

Although not considered, the proposed model can also be extended to the vertical component of 

the ground motion following the same techniques that are used for the horizontal components. 

To our knowledge, this is the first multi-component stochastic ground motion model for 

specified earthquake and site characteristics that properly accounts for the statistical 

characteristics of the component processes. 

Finally, comparisons against empirical data and trusted models in engineering practice 

provide a means for model validation and aid in identifying the limitations of the proposed 

model. Additionally, such comparisons may encourage implementation of the proposed model in 

engineering practice. One validation approach used in the present study is through comparing the 

statistics of synthetic elastic response spectra with their corresponding values predicted by the 

recently developed and widely used Next Generation Attenuation (NGA) models (Abrahamson 

et al. 2008). Similar comparison is performed by Frankel (2009), where a seismological physics-

based model is employed to generate synthetic ground motions and comparisons with NGA 

models are conducted in terms of elastic response spectra. Because NGA models are based on 

empirical data, this type of comparison indirectly validates synthetic ground motions against real 

ground motions.  

1.5 OBJECTIVES AND SCOPE OF THE STUDY 

The research described in this study has two main objectives: (1) developing a stochastic model 

for strong ground motions, (2) generating synthetic ground motions for specified earthquake and 

site characteristics. 

The first half of this report focuses on developing a fully nonstationary stochastic ground 

motion model that is based on a modulated filtered white-noise process with time-varying 

parameters. Compared to the existing models, the proposed model has the following advantages: 

(a) the temporal and spectral nonstationary characteristics are completely decoupled, facilitating 

identification and interpretation of the model parameters; (b) the model has a small number of 

parameters with physical interpretations; (c) there is no need for complicated analysis, such as 
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Fourier analysis or estimation of evolutionary power spectral density, to process the target 

accelerogram for identifying the model parameters; (d) simulation of a synthetic ground motion 

for specified model parameters is simple and requires little more than generation of standard 

normal random variables; (e) the long-period content of the motion is corrected by high-pass 

filtering to achieve zero velocity and displacement residuals and avoid overestimation of 

response spectral values at long periods; (f) the model and simulation method are developed for 

two horizontal components of the ground motion and can easily be extended to include the 

vertical component; (g) the model facilitates nonlinear random vibration analysis by TELM. 

Innovative and efficient parameter identification methods are developed to fit the stochastic 

model to a target accelerogram. Examples of simulated motions having statistical characteristics 

similar to target recorded accelerograms are presented. 

The second half of this report employs the proposed stochastic ground motion model to 

develop and validate a method for generating an ensemble of synthetic ground motion time-

histories for specified earthquake and site characteristics. This is achieved by fitting the 

stochastic model to a database of strong-motion records. Identification of the model parameters 

for many recorded motions allows development of predictive relations that empirically relate the 

model parameters to a selected set of earthquake and site characteristics. These predictive 

relations facilitate random generation of the model parameters, which is the key to realistically 

representing the natural variability of ground motions, for a given set of earthquake and site 

characteristics. The predictive models are validated by comparing the statistics of the elastic 

response spectra of synthetic ground motions with predicted statistics generated from the NGA 

database. The stochastic model and the simulation method are then extended to generation of two 

horizontal components of ground motion by proper accounting of the cross-correlations between 

the model parameters.  

The database of ground motions employed in this study is a subset of the widely used 

PEER NGA strong-motion database. At their present form, the results are applicable to shallow 

crustal earthquakes in active tectonic regions such as the Western United States, to moment 

magnitudes greater than 6.0, to source-to-site distances of at least 10 km, and to sites with shear-

wave velocity exceeding 600 m/s. 

This research helps advance the practice of PBEE by providing a means for generation of 

realistic synthetic ground motions for specified earthquake and site characteristics, which can be 
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used in lieu of or in conjunction with recorded motions, when the latter are lacking or 

nonexistent for specified design scenarios. 

1.6 ORGANIZATION OF REPORT 

This report is organized into eight chapters. The first objective as described in the previous 

section is addressed in Chapters 2 and 3, where a stochastic model for synthetic ground motions 

is derived and a method for parameter identification by fitting to a target recorded motion is 

developed. The second objective is addressed in Chapters 4 through 6, where a method for 

generating synthetic ground motions for specified earthquake and site characteristics is proposed 

and validated. In Chapter 7, the stochastic model and simulation method are extended to generate 

bi-directional ground motions. More details on the specific subjects covered in each chapter are 

presented below. 

Chapter 2 describes the development of a new site-based stochastic ground motion 

model. It begins with a modified formulation of the filtered white-noise process, which through a 

normalization decouples the temporal and spectral characteristics of the process. The model is 

then extended by allowing the filter parameters to vary with time, while maintaining complete 

separation of the time-varying temporal and spectral characteristics. A discrete representation of 

the process is then developed, whereby the process is defined as the summation of standard 

normal random variables with time-varying coefficients. This form is of particular interest for 

nonlinear random vibration analysis by TELM (Fujimura and Der Kiureghian 2007). This is 

followed by parameterization of the model and high-pass filtering to assure zero residual velocity 

and displacement. This chapter results in a stochastic model that captures the important 

characteristics of strong earthquake ground motions, while maintaining a mathematical form that 

is appropriate and efficient for modeling, digital simulation, and for use in nonlinear random 

vibration analysis.  

Chapter 3 develops a parameter identification method by fitting the statistical 

characteristics of the stochastic model to those of a target accelerogram. It also describes in detail 

the simulation procedure for generating synthetic ground motions once the model parameters are 

specified. By fitting the evolutionary statistical characteristics of the stochastic model proposed 

in Chapter 2 to those of a recorded motion, the model parameters are identified and synthetic 
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ground motions with characteristics similar to the recorded accelerogram are generated. Several 

examples of recorded ground motions, their identified parameters, and corresponding synthetic 

motions are presented. A condensed version of the materials in Chapters 2 and 3 has appeared in 

the journal publication Rezaeian and Der Kiureghian (2008). 

Chapter 4 begins the discussion on simulating synthetic motions for specified earthquake 

and site characteristics. In this chapter, the model proposed in Chapter 2 is fitted to a database of 

recorded ground motions by using a simplified version of the methods proposed in Chapter 3. 

The database of strong ground motions is created by selecting recordings from a larger PEER 

NGA database. Fitting the model to the records of this database provides a data set of model 

parameters versus variables describing the selected set of earthquake and site characteristics. 

Statistical data analysis is then performed to develop predictive equations for the model 

parameters in terms of the earthquake and site characteristic variables. The details and the results 

of the data analysis, such as distribution fitting for each model parameter, regression analysis, 

and correlation analysis are presented. The results in this chapter allow prediction of the 

stochastic model parameters without a need for recorded accelerograms.  

Chapter 5 employs the results of Chapter 4 to generate an ensemble of synthetic ground 

motions for specified earthquake and site characteristics. A method for random simulation of 

stochastic model parameters is presented that accounts for the cross-correlations between the 

parameters. Then the methods of Chapter 3 are used to generate synthetic ground motions for the 

simulated model parameters. Methods for conditional simulation of ground motions, where one 

or more of the model parameters (e.g., those defining the intensity or duration of the motion) are 

prescribed, are also developed. In simulation, the natural variability of real ground motions is 

preserved. Examples are presented and applications of the proposed method in PBEE are 

discussed.   

In Chapter 6, the proposed method of generating synthetic ground motions for specified 

earthquake and site characteristics is validated through examination of elastic response spectra. 

Elastic response spectra of simulated motions are compared against real recorded motions. 

Furthermore, the statistics of elastic response spectra of simulated motions at given periods are 

compared with those predicted by the NGA models. The methods incorporated in this chapter 

allow quantitative comparison between the variability among synthetic and real ground motions. 

It is concluded that, in general, the median and variability of the response spectra of simulated 
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motions agree with those predicted by the NGA models. A condensed version of the materials in 

Chapters 4, 5, and 6 has appeared in a journal publication by Rezaeian and Der Kiureghian 

(2010). 

Chapter 7 presents a method for simulating the orthogonal horizontal components of 

ground motion with correlated parameters for specified earthquake and site characteristics. The 

stochastic model parameters are identified for a database of recorded horizontal ground motion 

pairs that are rotated to their principal axes, along which the two components are statistically 

independent. New predictive equations are developed for the stochastic model parameters in 

terms of earthquake and site characteristics, and correlation coefficients between model 

parameters of the two components are estimated empirically. An extension of the simulation 

method proposed in Chapters 4 and 5 is then utilized to generate pairs of synthetic ground 

motion components along the principal axes.  

Finally, Chapter 8 provides a summary of the main results and conclusions of the study. 

Recommendations for future studies are presented. 

 



2 Stochastic Model of Earthquake Ground 
Motion 

2.1 INTRODUCTION 

For many years, stochastic processes have been used to model earthquake ground motions. One 

class of stochastic process models for earthquake ground motion is based on the interpretation of 

ground acceleration as a filtered white-noise process, i.e., a process obtained by passing a white-

noise process through a filter. Due to efficient digital simulation of sample functions for a 

filtered white-noise process, this class of models is appealing when it comes to simulating 

earthquake ground motions. One of the earliest efforts in this area is the work done by Tajimi 

(1959). His model does not account for the nonstationarity that is present in earthquake ground 

motions. Other early representative works that have employed the filtered white-noise model 

with alternative filters and subsequent modulation in time to achieve temporal nonstationarity 

include Bolotin (1960), Shinozuka and Sato (1967), Amin and Ang (1968), Iyengar and Iyengar 

(1969), and Ruiz and Penzien (1971). Unlike real ground motions, these models have essentially 

time-invariant frequency content. As a result, other types of stochastic models such as those 

based on filtered Poisson processes (e.g., Cornell [1960]; Lin [1965]), auto-regressive moving 

average models (e.g., Jurkevics and Ulrych [1978]; Hoshiya and Hasgur [1978]; Polhemus and 

Cakmak [1981]; Kozin [1988]; Chang et al. [1982]; Conte et al. [1992]; Mobarakeh et al. 

[2002]); and various forms of spectral representations (e.g., Saragoni and Hart [1974]; Der 

Kiureghian and Crempien [1989]; Conte and Peng [1997]; Wen and Gu [2004]) became popular 

for modeling earthquake ground motions. These models are in general difficult to match with 

recorded ground motions and complicated to simulate. This chapter introduces a new 

formulation of the filtered white-noise process for modeling earthquake ground motions. While 

this model takes advantage of the efficiency of the filtered white-noise process in modeling and 

simulation, it adequately represents the nonstationary characteristics of real earthquake ground 
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motions both in time and frequency domains. Hence, we refer to it as a fully nonstationary 

stochastic model. 

We start by developing a new formulation of the filtered white-noise process. Temporal 

and spectral nonstationarities are achieved through modulation in time and by varying the filter 

parameters over time. Through a normalization, the temporal and spectral characteristics of the 

process are completely separated, which greatly simplifies the modeling procedure. A discrete 

representation of the process, defined as the summation of standard normal random variables 

with time-varying coefficients, is then presented. This form is of particular interest for digital 

simulation and for nonlinear random vibration analysis. This is followed by interpreting the 

characteristics of real ground motions (e.g., evolutionary intensity and time-varying frequency 

content) as the statistical characteristics of a stochastic process (e.g., mean-square intensity, 

mean zero-level up-crossing rate, and bandwidth of the process). The model is then 

parameterized such that a few parameters control the main statistical characteristics of the 

ground motion. Finally, the last section describes a post-processing procedure that is required in 

order to assure zero residuals in the velocity and displacement time-histories. This post-

processing corrects the long-period content of the resulting response spectrum, which has been 

overestimated by most stochastic ground motion models in the past. 

The main goal of this chapter is to develop a stochastic model that captures important 

characteristics of strong earthquake ground motions while ensuring a mathematical form that is 

adequate and efficient for modeling, digital simulation, and for use in nonlinear random vibration 

analysis. 

2.2 FORMULATION OF THE MODEL 

Earthquake ground motions have nonstationary characteristics both in the time and the frequency 

domains. The temporal nonstationarity (nonstationarity in the time domain) refers to the 

variation of the intensity of the ground motion in time. The spectral nonstationarity 

(nonstationarity in the frequency domain) refers to the variation of the frequency content of the 

motion in time. It is important to accurately model both these nonstationarities when simulating 

ground motions. A fully nonstationary filtered white-noise process can properly represent both 

the temporal and spectral nonstationary characteristics of earthquake ground motions. This 
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process is obtained by time-modulating a filtered white-noise process with the filter having time-

varying parameters. Whereas time-modulation provides the temporal nonstationarity, variation of 

filter parameters over time achieves the spectral nonstationarity.  

2.2.1 Filtered White-Noise Process 

White noise refers to a stationary random process that has a zero mean and a constant spectral 

density for all frequencies. The word white refers to the equal distribution of power among all 

the frequencies and comes from an analogy with white light, which is known to have equal 

contributions from all visible frequency components. Let (ݐ)ݓ represent a white-noise process in 

the time domain with power spectral density (PSD) function ܵ௪௪(߱) = ܵ, where ߱ is the 

angular frequency and ranges from −∞ to ∞. This process has an infinite variance (sometimes 

referred to as the total power), ߪ௪ଶ = ׬ ܵ௪௪(߱)݀߱ஶିஶ = ∞, and hence is purely theoretical. Even 

though the white-noise process is not a physically meaningful entity by itself, it can be used to 

approximate meaningful processes in real-world situations. One example is the use of a filtered 

white-noise process to model earthquake ground acceleration. 

The conventional filtered white-noise process is the stationary response of a linear time-

invariant filter subjected to a white-noise excitation. The response of a linear filter may be 

calculated by using the Duhamel convolution integral. Hence, the filtered white-noise process is 

formulated as 

(ݐ)݂  = න ݐ)݄ − ߬, ૃ)௧
ିஶ d߬ (2.1)(߬)ݓ

where ݄(ݐ, ૃ) denotes the impulse response function (IRF)1 of the linear filter, with ૃ 

representing a set of parameters used to “shape” the filter response. Specifically, ૃ may include 

the natural frequency and damping of the filter, which control the predominant frequency and 

bandwidth of the resulting process. We assume the filter is causal so that ݄(ݐ, ૃ) = 0 for ݐ ൏ 0, 

and that it is stable so that ׬ ,ݐ)݄ ૃ)dݐ ൏ ∞ஶ଴ , which also implies lim௧՜ஶ ,ݐ)݄ ૃ) = 0. We also 

assume ݄(ݐ, ૃ) is at least once differentiable for all ݐ. Note that this requires ݄(ݐ, ૃ) to start from 

zero at ݐ = 0 and not have any discontinuities. (The reason for this requirement will become 
                                                 
1 IRF is the response of a linear system (i.e., the filter) to a unit impulsive excitation with zero initial conditions. It 

uniquely characterizes a linear system for a specified input-output pair (see Figure 2.1a). 
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evident in Section 2.3.) More details on the choice of the linear filter are presented in Section 

2.4.2. As previously mentioned, (ݐ)ݓ represents a white-noise process, which is the input 

excitation to the linear filter. The white-noise process and, therefore, the filter response are 

assumed to be Gaussian. Figure 2.1 schematically shows the input-output pairs for a linear filter. 

The standard deviation of the filtered white-noise process in (2.1) is represented by ߪ௙. 

Since the response of a stable filter to a white-noise excitation becomes stationary after sufficient 

time, and since the white-noise process is assumed to have started in the infinite past (the lower 

limit of the integral is −∞), the filter response at any finite time point is stationary and, 

therefore, ߪ௙ is a constant and is given by 

௙ଶߪ  = ܵߨ2 න ݄ଶ(ݐ − ߬, ૃ)d߬௧
ିஶ  (2.2)

where ܵ is the constant PSD, commonly referred to as the intensity of the white-noise process. 

A filtered white-noise process may be physically interpreted as a seismic ground motion 

process by virtue of the superposition principle of the Duhamel integral. The white-noise may be 

regarded as a train of random pulses (as explained later in Section 2.2.4) that represent 

intermittent ruptures at the source of generation of the earthquake (i.e., the fault). The filter may 

represent the medium through which seismic waves travel with the characteristics of the filter 

controlling the frequency content and bandwidth of the process. The sketch in Figure 2.2 

demonstrates this concept. 

Unlike real seismic ground motions, the filtered white-noise process defined by (2.1) 

lacks nonstationarity in both the time and frequency domains. In subsequent sections, this 

stochastic model is modified in ways to accommodate for this shortcoming. In particular, the 

filtered white-noise process will be multiplied by a deterministic time modulating function to 

achieve temporal nonstationarity; furthermore, a linear filter with time-varying parameters is 

used to achieve spectral nonstationarity. 

2.2.2 Modulated Filtered White-Noise Process: Achieving Temporal Nonstationarity 

After normalization by its standard deviation, the filtered white-noise process in (2.1) is time-

modulated to obtain temporal nonstationarity. The resulting process is called a modulated filtered 
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white-noise process. When representing earthquake ground motions, the modulation over time 

represents the evolution of the ground motion intensity in time. 

The modulated filtered Gaussian white-noise process is formulated as  

(ݐ)ݔ  = ,ݐ)ݍ હ) ቈ ௙ߪ1 න ݐ)݄ − ߬, ૃ)௧
ିஶ d߬቉ (2.3)(߬)ݓ

where ݐ)ݍ, હ) is the deterministic, non-negative modulating function with હ denoting a set of 

parameters used to control the shape and intensity of the function. Due to the normalization by ߪ௙, the process inside the square brackets in (2.3) has unit variance. As a result, the function ݐ)ݍ, હ) defines the standard deviation of the process (ݐ)ݔ, i.e., 

(ݐ)௫ߪ  = ,ݐ)ݍ હ) (2.4)

Thus, the function ݐ)ݍ, હ) completely defines the temporal nonstationarity of the process. Figure 

2.3 represents a typical realization of the stationary process inside the square brackets in (2.3), 

and Figure 2.4 represents the same process modulated over time. 

The disadvantage of the modulated filtered white-noise process defined by (2.3) is that it 

lacks spectral nonstationarity. (Note the time-invariant frequency content of the process in Fig. 

2.4.) This causes the frequency content of the process, as represented by the instantaneous power 

spectral density, to have a time-invariant shape that is scaled in time uniformly over all 

frequencies according to the variance of the process, ݍଶ(ݐ, હ). For this reason, this class of 

processes is known as uniformly modulated. 

2.2.3 Modulated Filtered White-Noise Process with Spectral Nonstationarity 

As mentioned earlier, earthquake ground motions have nonstationary characteristics in both the 

time and frequency domains. The temporal nonstationarity arises from the transient nature of the 

earthquake event. The intensity of a typical strong ground motion gradually increases from zero 

to achieve a nearly constant intensity during a “strong shaking” phase, and then gradually decays 

to zero with a total duration of about 10-60 seconds. This temporal nonstationarity is achieved by 

multiplying the stochastic process with a deterministic function that varies over time as done in 

Section 2.2.2. 

The spectral nonstationarity of the ground motion arises from the evolving nature of the 

seismic waves arriving at a site. Typically, high-frequency (short wavelength) P waves tend to 
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dominate the initial few seconds of the motion. These are followed by moderate-frequency 

(moderate wavelength) S waves, which tend to dominate the strong-motion phase of the ground 

motion. Towards the end of the shaking, the ground motion is dominated by low-frequency (long 

wavelength) surface waves. The complete ground motion is an evolving mixture of these waves 

with a dominant frequency that tends towards lower values with time. This evolving frequency 

content of the ground motion can be critical to the response of degrading structures, which have 

resonant frequencies that also tend to decay with time as the structure responds to the excitation. 

Thus, in modeling earthquake ground motions, it is crucial that both the temporal and spectral 

nonstationary characteristics are properly represented. As described below, one convenient way 

to achieve spectral nonstationarity with the filtered white-noise process is to allow the filter 

parameters to vary with time. 

Generalizing the form in (2.3), we define the fully nonstationary filtered white-noise 

process as 

(ݐ)ݔ  = ,ݐ)ݍ હ) ቊ (ݐ)௙ߪ1 න ݐ]݄ − ߬, ૃ(߬)௧
ିஶ d߬ቋ (2.5)(߬)ݓ[

where the parameters ૃ of the filter are now made dependent on ߬, the time of application of the 

load increment. Figure 2.5 illustrates the idea behind this formulation. The figure shows the 

responses of a linear filter to two unit load pulses at times ߬ = 1 s, and ߬ = 3 s, with the filter 

having a higher frequency at the earlier time. The superposition of such incremental responses to 

a sequence of random load pulses produces a process that has a time-varying frequency content, 

as formulated by the integral process inside the braces in (2.5) and illustrated in Figure 2.6. 

Naturally, the response of such a filter may not reach a stationary state. Indeed, the 

standard deviation ߪ௙(ݐ) of the process defined by the integral in (2.5) in general is a function of 

time and is given by 

(ݐ)௙ଶߪ  = ܵߨ2 න ݄ଶ[ݐ − ߬, ૃ(߬)]d߬௧
ିஶ  (2.6)

However, owing to the normalization by the standard deviation, the process inside the braces in 

(2.5) has unit variance. Hence, the identity in (2.4) still holds. However, the normalized process 

inside the braces now has a time-varying frequency content (Fig. 2.6). Thus, in addition to 

temporal nonstationarity, the formulation in (2.5) provides spectral nonstationarity. By proper 
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selection of the filter parameters and their evolution in time, one can model the spectral 

nonstationarity of a ground motion process. 

2.2.4 Discretization of the Fully Nonstationary Process 

In order to digitally simulate a stochastic process, some sort of discretization is necessary. 

Furthermore, a discretized form that facilitates nonlinear random vibration analysis by use of the 

Tail-Equivalent Linearization Method (TELM) (Fujimura and Der Kiureghian 2007), is 

desirable. The following describes a discretized form of the process in (2.5) that meets these 

objectives.  

The modulating function ݐ)ݍ, હ) used in modeling ground motions usually starts from a 

zero value and gradually increases over a period of time. Furthermore, the damping value of the 

filter used to model ground motions is usually large so that the IRF, ݄[ݐ − ߬, ૃ(߬)], quickly 

diminishes with increasing ݐ − ߬. Under these conditions, the lower limit of the integral in (2.5) 

and (2.6), which is −∞, can be replaced with zero (or a finite negative value) without loss of 

accuracy. This replacement offers a slight computational convenience, allowing the discretized 

time points to start from zero. 

We select a discretization in the time domain. Let the duration of the ground motion be 

discretized into a sequence of equally spaced time points ݐ௜ = ݅ ൈ ݅ for ݐ∆ = 0,1, … , ݊, where ∆ݐ is a small time step. The discretization time steps must be sufficiently small to capture the 

critical points of a complete cycle. Figure 2.7 shows a complete symmetrical cycle with stars 

indicating the critical points. If ߱௠௔௫ denotes the largest frequency to be considered, then ∆ݐ ൑ ߨ (2߱௠௔௫)⁄  (i.e., quarter of the complete cycle) must be selected. In most earthquake 

engineering applications ∆ݐ = 0.01 s is adequate.  

At a time 0 ,ݐ ൏ ݐ ൑ ݇ ௡, lettingݐ = int ቀ ௧∆௧ቁ, where 0 ൑ ݇ ൑ ݊, the process in (2.5) can 

be written as  (ݐ)ݔ = ,ݐ)ݍ હ) ቊ (ݐ)௙ߪ1 න ݐ]݄ − ߬, ૃ(߬)௧
௧ೖ d߬ቋ(߬)ݓ[ if ݇ = 0 

      = ,ݐ)ݍ હ) ൝ (ݐ)௙ߪ1 ෍ න ݐ]݄ − ߬, ૃ(߬)௧೔௧೔షభ d߬௞(߬)ݓ[
௜ୀଵ + (ݐ)௙ߪ1 න ݐ]݄ − ߬, ૃ(߬)௧

௧ೖ d߬ൡ(߬)ݓ[   if  0 ൏ ݇ 

(2.7)
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Neglecting the integral over the time duration between ݐ௞ and ݐ, which is an integral over a 

fraction of the small time step, and assuming that ݄[ݐ − ߬, ૃ(߬)] remains essentially constant 

during each small time interval ݐ௜ିଵ ൑ ݐ ൑  ௜, one obtainsݐ

(ݐ)ොݔ  = ,ݐ)ݍ હ) ൝ (ݐ)ො௙ߪ1 ෍ ݐ]݄ − ,௜ݐ [(௜ݐ)ૃ න d߬௧೔௧೔షభ(߬)ݓ
௞

௜ୀଵ ൡ  

         = ,ݐ)ݍ હ) ൝ (ݐ)ො௙ߪ1 ෍ ݐ]݄ − ,௜ݐ [(௜ݐ)ૃ ௜ܹ௞
௜ୀଵ ൡ ; ௞ݐ ൑ ݐ ൏  ௞ାଵݐ

(2.8)

where 

 ௜ܹ = න d߬௧೔௧೔షభ(߬)ݓ  (2.9)

Integrals of the white-noise process, ௜ܹ, ݅ = 1, … , ݊, are statistically independent and identically 

distributed Gaussian random variables having zero mean and the variance 2ݐ∆ܵߨ. Introducing 

the standard normal random variables ݑ௜ = ௜ܹ ⁄ ݐ∆ܵߨ2√ , (2.8) is written as 

(ݐ)ොݔ  = ,ݐ)ݍ હ) ൝√2ߪݐ∆ܵߨො௙(ݐ) ෍ ݐ]݄ − ,௜ݐ ௜௞ݑ[(௜ݐ)ૃ
௜ୀଵ ൡ ; ௞ݐ ൑ ݐ ൏ ௞ାଵ (2.10)ݐ

We have used superposed hats on two terms in the above expressions. The one on ݔො(ݐ) is to 

highlight the fact that the expressions (2.8) and (2.10) are for the discretized process and employ 

the approximations involved in going from (2.7) to (2.8). The hat on ߪො௙(ݐ) is used to signify that 

this function is the standard deviation of the discretized process represented by the sum inside 

the braces in (2.8), so that the process inside the braces in (2.10) is properly normalized. Since ௜ܹ in (2.8) are statistically independent random variables, one has 

(ݐ)ො௙ଶߪ  = ݐ∆ܵߨ2 ෍ ݄ଶ[ݐ − ,௜ݐ ௞[(௜ݐ)ૃ
௜ୀଵ ; ௞ݐ ൑ ݐ ൏ ௞ାଵ (2.11)ݐ

This equation is the discretized form of (2.6).  

 The discretized representation in (2.10) has the compact form: 

(ݐ)ොݔ  = ,ݐ)ݍ હ) ෍ ,ݐ]௜ݏ [(௜ݐ)ૃ ௜௞ݑ
௜ୀଵ ; ௞ݐ ൑ ݐ ൏ ௞ାଵ (2.12)ݐ

where 
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,ݐ]௜ݏ  [(௜ݐ)ૃ = (ݐ)ො௙ߪ ݐ∆ܵߨ2√ ݐ]݄ − ,௜ݐ  [(௜ݐ)ૃ
         = ݐ]݄ − ,௜ݐ ∑ට[(௜ݐ)ૃ ݄ଶ[ݐ − ,௝ݐ ௞௝ୀଵ[(௝ݐ)ૃ   ; ௞ݐ    ൑ ݐ ൏ ; ௞ାଵݐ   1 ൑ ݅ ൑ ݇ 

(2.13)

Note that ݐ]݅ݏ, ,ݐ]݅ݏ ௜; therefore eachݐ is a function of the filter parameters at time [(݅ݐ)ૃ ݅,[(݅ݐ)ૃ = 1, … , ݇, may correspond to a different set of values of the filter parameters. For simplicity in 

notation, hereafter ݐ]݅ݏ,  .(ݐ)݅ݏ is referred to as [(݅ݐ)ૃ

The discretized stochastic ground motion process in (2.12) not only facilitates digital 

simulation but is of a form that can be employed for nonlinear random vibration analysis by use 

of the TELM. Furthermore, it has interesting geometric interpretations as described in Der 

Kiureghian (2000). In particular, the zero-mean Gaussian process ݔො(ݐ) can be seen as the scalar 

product of a deterministic, time-varying vector of magnitude ݐ)ݍ, હ) along the unit vector of the 

deterministic basis functions (ݐ)ܛ = ,(ݐ)ଵݏ] … ,  T and a vector of time-invariant, standard[(ݐ)௞ݏ

normal random variables ܝ = ,ଵݑ] … ,   :௞]Tݑ

(ݐ)ොݔ  = ,ݐ)ݍ હ)[(ݐ)ܛTܝ]; ௞ݐ ൑ ݐ ൏ ௞ାଵ (2.14)ݐ

Furthermore, the model form in (2.14) has interesting physical interpretations. Standard 

normal random variables, ݑ௜, provide the randomness that exists in real ground motions. The 

deterministic basis functions, ݏ௜(ݐ), control the evolving frequency content of the process, 

capturing the spectral nonstationarity of real ground motions. Finally, the modulating function, ݐ)ݍ, હ), controls the time evolution of the intensity of the process, hence capturing the temporal 

nonstationarity of real ground motions. 

2.2.5 Remark: Complete Separation of Temporal and Spectral Nonstationarities 

An important advantage of the proposed model is the complete separation of the temporal and 

spectral nonstationarities. The key to this separation is the normalization by ߪ௙(ݐ) in (2.5). 

Owing to this normalization, the segment inside the braces in (2.5) is a unit-variance process, 

which causes the modulating function, ݐ)ݍ, હ), to be the standard deviation of the overall 

process, (ݐ)ݔ, as seen in (2.4). This way, the evolving intensity of the process is solely controlled 

by the modulating function, while the selected filter (the form of the IRF) and its time-varying 
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parameters completely control the spectral nonstationarity. Figure 2.8 illustrates this concept 

graphically. 

Normalization by ߪ௙(ݐ), and separation of temporal and spectral nonstationarities provide 

several noteworthy advantages of the proposed model. First, due to normalization by ߪ௙(ݐ), the 

intensity of the white-noise process cancels out and ܵ can be assigned any arbitrary positive 

value. Second, selection of the modulating function is completely independent from the selection 

of the linear filter, providing flexibility in modeling. Finally, the separation of temporal and 

spectral nonstationarities provides ease in parameter identification and simulation procedures 

(see Chapter 3). 

2.3 STATISTICAL CHARACTERISTICS OF THE GROUND MOTION PROCESS 

In the time domain, a ground motion can be characterized by its evolving intensity. The intensity 

of a zero-mean Gaussian process (employed in this study to model ground motions) is 

completely characterized by its time-varying standard deviation. In the proposed ground motion 

model, this time-varying standard deviation is identical to the modulating function ݐ)ݍ, હ).  

In the frequency domain, a ground motion process can be characterized by its evolving 

frequency content. In particular, the frequency content may be characterized in terms of a 

predominant frequency and a measure of the bandwidth of the process as they evolve in time. 

These properties of the process are influenced by the selection of the filter, i.e., the form of the 

IRF, ݄[ݐ − ߬, ૃ(߬)], and its time-varying parameters ૃ(߬). 

As a surrogate for the predominant frequency of the process, we employ the mean zero-

level up-crossing rate, 0)ߥା,  i.e., the mean number of times per unit time that the process ,(ݐ

crosses the level zero from below (see Fig. 2.9). Since the scaling of a process does not affect its 

zero-level crossings, 0)ߥା,  for the process in (2.12), which is the discretized equivalent of the (ݐ

process (2.5), is identical to that for the unmodulated process: 

(ݐ)ݕ  = ෍ (ݐ)௜ݏ ௜௞ݑ
௜ୀଵ ; ௞ݐ ൑ ݐ ൏ ௞ାଵݐ , ݇ = 1, … ݊ (2.15)

It is well known (Lutes and Sarkani 2004) that for a zero-mean Gaussian process (ݐ)ݕ  
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,0ା)ߥ  (ݐ = ට1 − ௬௬ሶଶߩ ߨ2(ݐ) ௬ሶߪ  (ݐ)௬ߪ(ݐ)
(2.16)

where ߪ௬(ݐ), ߪ௬ሶ ௬௬ሶߩ and ,(ݐ)  are, respectively, the standard deviations and cross-correlation (ݐ)

coefficient of (ݐ)ݕ and its time derivative, ݕሶ(ݐ) = d(ݐ)ݕ dݐ⁄ , at time ݐ. For the process in (2.15), 

these are given by 

(ݐ)௬ଶߪ  = ෍ (ݐ)௜ଶݏ = 1 ; ௞ݐ ൑ ݐ ൏ ௞ାଵ௞ݐ
௜ୀଵ  (2.17)

 

(ݐ)௬ሶଶߪ  = ෍ (ݐ)ሶ௜ଶݏ ; ௞ݐ ൑ ݐ ൏ ௞ାଵ௞ݐ
௜ୀଵ  (2.18)

 

௬௬ሶߩ  (ݐ) = ௬ሶߪ(ݐ)௬ߪ1 (ݐ) ෍ (ݐ)ሶ௜ݏ(ݐ)௜ݏ ; ௞ݐ ൑ ݐ ൏ ௞ାଵ௞ݐ
௜ୀଵ  (2.19)

where ݏሶ௜(ݐ) = dݏ௜(ݐ) dݐ⁄ . Using (2.13) and letting ݄௜(ݐ) = ݐ]݄ − ,௜ݐ  one can easily show ,[(௜ݐ)ૃ

that ݏሶ௜(ݐ) = ቈ ሶ݄ ௜(ݐ) − ∑ ௝݄(ݐ) ሶ݄௝(ݐ)௞௝ୀଵ∑ ௝݄ଶ(ݐ)௞௝ୀଵ ݄௜(ݐ)቉ 1ට∑ ௝݄ଶ(ݐ)௞௝ୀଵ ; ௞ݐ ൑ ݐ ൏ ௞ାଵݐ , 1 ൑ ݅ ൑ ݇  (2.20)

The second equality in (2.17) is a direct result of the normalization explained in Section 2.2. 

Since (ݐ)ݕ is a zero-mean process and, therefore, ߪ௬ଶ = ([ଶݕ]ܧ)the equality d ,[ଶݕ]ܧ dݐ⁄ = 0 is 

obtained by taking the derivative of (2.17) with respect to time. Reversing the orders of 

differentiation and expectation results in ݕݕ]ܧሶ ] = 0, which implies zero correlation between y 

and its derivative, i.e., ߩ௬௬ሶ (ݐ) = 0. Thus, (2.16) can be simplified to  

,0ା)ߥ  (ݐ = ௬ሶߪ ߨ2(ݐ)  (2.21)

It is clear from (2.18) and (2.20) that the filter should be selected so that its IRF is differentiable 

at all times. For any given differentiable IRF and filter parameter functions, the mean zero-level 

up-crossing rate is computed from (2.21) by use of the relations in (2.18) and (2.20). Naturally, 

one can expect that the fundamental frequency of the filter will have a dominant influence on the 

predominant frequency of the resulting process. 
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Several alternatives are available for characterizing the time-varying bandwidth of the 

process. In this paper we use the mean rate of negative maxima or positive minima as a surrogate 

for the bandwidth (see Fig. 2.9 for examples of negative maxima and positive minima). This 

measure has the advantage that it is not affected by the modulating function. As is well known, 

in a zero-mean narrow-band process, almost all maxima are positive and almost all minima are 

negative (see Fig. 2.10a). With increasing bandwidth, the rate of occurrence of negative maxima 

or positive minima increases (see Fig. 2.10b). Thus, by determining the rate of negative maxima 

or positive minima, a time-varying measure of bandwidth can be developed. An analytical 

expression of this rate for the theoretical model can be derived in terms of the well-known 

distribution of local peaks (Lutes and Sarkani 2004). However, the resulting expression is 

cumbersome, since it involves the variances and cross-correlations of ݕ ,(ݐ)ݕሶ ሷݕ and ,(ݐ)  ,and (ݐ)

therefore, the second derivative of ݏ௜(ݐ). For this reason, in this paper the mean rate of negative 

maxima or positive minima for the selected model process are computed by counting and 

averaging them in a sample of simulated realizations of the process. As we will shortly see, the 

damping ratio of the filter has a dominant influence on the bandwidth of the process.     

2.4 PARAMETERIZATION OF THE MODEL 

The parameters of the proposed stochastic ground motion model defined by (2.5) can be 

categorized into two independent groups: (1) the parameters હ of the modulating function and 

(2) the time-varying parameters of the linear filter, ૃ(߬). The model is completely defined by 

specifying the forms and parameters of the modulating function and the IRF of the linear filter. 

This section describes the possible forms and constraints of these functions and identifies the 

model parameters.  

2.4.1 Modulating Function and Its Parameters 

In general, any function that gradually increases from zero to achieve a nearly constant intensity 

that represents the “strong shaking” phase of an earthquake and then gradually decays back to 

zero is a valid modulating function. Several models have been proposed in the past. These 

include piece-wise modulating functions proposed by Housner and Jennings (1964) and Amin 
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and Ang (1968), a double-exponential function proposed by Shinozuka and Sato (1967), and a 

gamma function proposed by Saragoni and Hart (1974). Two modulating functions that are 

employed in this study are presented below. 

 

Piece-wise modulating function: 

A modified version of the Housner and Jennings (1964) model that hereafter will be referred to 

as the “piece-wise” modulating function is defined by 

,ݐ)ݍ  હ) = 0                  if ݐ ൑ ଴ܶ               = ଵߙ ൬ ݐ − ଴ܶଵܶ − ଴ܶ൰ଶ                      if     ଴ܶ ൑ ݐ ൑ ଵܶ               = ଵ                                           if     ଵܶߙ ൑ ݐ ൑ ଶܶ               = ଵߙ exp[−ߙଶ(ݐ − ଶܶ)ఈయ] if ଶܶ ൑  ݐ

(2.22)

This model has the six parameters હ = ,ଵߙ) ,ଶߙ ,ଷߙ ଴ܶ, ଵܶ, ଶܶ), which obey the conditions ଴ܶ ൏ ଵܶ ൑ ଶܶ, and 0 ൏ ଷߙ ଷ. (The Housner and Jennings model hasߙ,ଶߙ,ଵߙ = 1.) ଴ܶ denotes the 

start time of the process; ଵܶ and ଶܶ denote the start and end times of the “strong shaking” phase, 

which has intensity ߙଵ; and ߙଶ and ߙଷ control the shape of the decaying end of the function. 

Figure 2.11 shows a piece-wise modulating function for selected parameter values.   

 

Gamma modulating function: 

Another model used in this study is the “gamma” modulating function, defined by the formula: 

,ݐ)ݍ  હ) = 0                  if ݐ ൑ ଴ܶ               = ݐ)ଵߙ − ଴ܶ)ఈమିଵexp[−ߙଷ(ݐ − ଴ܶ)] if ଴ܶ ൑ ݐ     (2.23)

This function is proportional to the gamma probability density function, thus the reason for its 

name. The model has four parameters હ = ,ଵߙ) ,ଶߙ ,ଷߙ ଴ܶ), where 0 ൏ ,ଵߙ ଷ, and 1ߙ ൏  .ଶߙ

Again, ଴ܶ denotes the start time of the process. Of the other three parameters, ߙଵ controls the 

intensity of the process, ߙଶ controls the shape of the modulating function, and ߙଷ controls the 

duration of the motion. Figure 2.12 shows a gamma modulating function for selected parameter 

values. 
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2.4.2 Linear Filter and Its Parameters 

In the frequency domain, the properties of the model process are influenced by the selection of 

the filter, i.e., the form of the IRF ݄[ݐ − ߬, ૃ(߬)], and its time-varying parameters ૃ(߬) that are 

used to “shape” the filter response. In particular, for a second-order filter (employed in this 

study), the time-varying frequency content of the process may be controlled by the natural 

frequency and damping of the filter, as they evolve in time.  

As stated in Section 2.2.1, in choosing the linear filter, certain constraints must be 

followed to make sure that the choice of the IRF is acceptable: 

• The filter should be causal so that ݄(ݐ, ૃ)=0 for ݐ ൏ 0. 

• The filter should be stable so that ׬ ,ݐ)݄ ૃ)dݐ ൏ ∞ஶ଴ , which requires lim௧՜ஶ ,ݐ)݄ ૃ) = 0. 

• The filter must have an IRF that is at least once differentiable so that (2.20) can be 

evaluated.  

Any damped single or multi-degree-of-freedom linear system that follows the above constraints 

can be selected as the filter. 

In this study, we select  ݄[ݐ − ߬, ૃ(߬)] = ߱௙(߬)ට1 − (߬)௙ଶߞ expൣ−ߞ௙(߬)߱௙(߬)(ݐ − ߬)൧ ൈ sin ൤߱௙(߬)ට1 − ݐ)(߬)௙ଶߞ − ߬)൨ ;  ߬ ൑  ݐ

                          = 0     otherwise 

(2.24)

which represents the pseudo-acceleration response of a single-degree-of-freedom linear oscillator 

subjected to a unit impulse, in which ߬ denotes the time of the pulse (see Fig. 2.5) and ૃ(߬) =[߱௙(߬),  ௙(߬) denoting the damping ratio, both dependent on the time of application of the pulse. Weߞ ௙(߬)] is the set of parameters of the filter with ߱௙(߬) denoting the natural frequency andߞ

expect ߱௙(߬) to influence the predominant frequency of the resulting ground motion process, 

whereas ߞ௙(߬) to influence its bandwidth.  

Aiming for a simple model and based on analysis of a large number of accelerograms, we 

adopt a linear form for the filter frequency: 

 ߱௙(߬) = ߱଴ − (߱଴ − ߱௡) ௡ (2.25)ݐ߬

In the above expression, ݐ௡ is the total duration of the ground motion, ߱଴ is the filter frequency 

at time ݐ଴ = 0, and ߱௡ is the frequency at time ݐ௡. Thus, the two parameters ߱଴ and ߱௡ describe 
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the time-varying frequency content of the ground motion. The predominant frequency of a 

typical earthquake ground motion tends to decay with time; hence, it is expected that ߱଴ ൐ ߱௡ 

for a typical motion. Of course any other two parameters that describe the linear function in 

(2.25) may be used in place of ߱଴ and ߱௡ (as is done later in Chapter 4). 

Investigations of several accelerograms revealed that the variation of their bandwidth 

measure with time is relatively insignificant. Thus, as a first approximation, the filter damping is 

considered a constant:  

(߬)௙ߞ  = ௙ (2.26)ߞ

A more refined model for the filter damping ratio that accounts for the observed variation in the 

bandwidth of some recorded motions is considered later in this study (see Section 3.2.3). The 

refined model is a piece-wise constant function of the form: 

(߬)௙ߞ  = ൝ߞଵ if 0 ൑ ߬ ൑ ଵܶߞଶ if ଵܶ ൏ ߬ ൑ ଶܶߞଷ if ଶܶ ൏ ߬ ൑ ௡ (2.27)ݐ

with parameters ߞଵ, ,ଶߞ  ,ଷߞ  ଵܶ, and ଶܶ that must be identified for a target motion. The function in 

(2.27) may have fewer or more than three pieces, as required. 

One disadvantage of using a single-degree-of-freedom filter, as in (2.24), is that such a 

filter can characterize only a single dominant frequency in the ground motion. One can select a 

multi-degree-of-freedom filter instead to simulate ground motions with multiple dominant 

frequencies, in which case additional parameters will need to be introduced and identified. This 

is possible with the proposed model, but is not pursued in the present study.  

2.4.3 Model Parameters 

With the above parameterization, the stochastic ground motion model is completely defined by 

specifying the forms of the modulating and IRF functions, and the parameters that define them. 

Specifically, the parameters હ = ,ଵߙ) ,ଶߙ ,ଷߙ ଴ܶ, … ) define the modulating function and 

completely control the temporal nonstationarity of the process (six parameters (ߙଵ, ,ଶߙ ,ଷߙ ଴ܶ, ଵܶ, ଶܶ) if a “piece-wise” formulation as in (2.22) is selected, four parameters (ߙଵ, ,ଶߙ ,ଷߙ ଴ܶ) if a “gamma” formulation as in (2.23) is selected). With a linearly varying filter 

frequency and a constant filter damping ratio, the three parameters (߱଴, ߱௡,  ௙) define the filterߞ
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IRF and completely control the spectral nonstationarity of the process. Therefore, the total 

number of the model parameters may be as few as six if ଴ܶ = 0 is selected: (ߙଵ, ,ଶߙ ,ଷߙ ߱଴, ߱௡,  .(௙ߞ

2.5 POST-PROCESSING BY HIGH-PASS FILTERING 

In general, site-based stochastic ground motion models tend to overestimate the structural 

response at long periods (as also recognized by Papadimitriou [1990] and Liao and Zerva 

[2006]), and the model presented in this study is not an exception. Furthermore, the proposed 

stochastic ground motion model does not guarantee that the first and second integrals of the 

acceleration process over time vanish as time goes to infinity. As a result, the variances of the 

velocity and displacement processes usually keep on increasing even after the acceleration has 

vanished, resulting in non-zero residuals. This is contrary to base-line-corrected accelerograms, 

which have zero residual velocity and displacement at the end of the record. To overcome these 

problems, a high-pass filter is used to adjust the low-frequency content of the stochastic model. 

Furthermore, this high-pass filter is selected to be the critically damped, second-order oscillator 

to guarantee zero residuals in the acceleration, velocity, and displacement time-histories. The 

corrected acceleration record, denoted ݖሷ(ݐ), is obtained as the solution of the differential 

equation: 

(ݐ)ሷݖ  + 2߱௖ݖሶ(ݐ) + ߱௖ଶ(ݐ)ݖ = (2.28) (ݐ)ොݔ

where ߱௖ is the frequency of the high-pass filter and ݔෝ(ݐ) is the discretized acceleration process 

as defined in (2.12). Due to high damping of the oscillator, it is clear that ݖ ,(ݐ)ݖሶ ሷݖ and ,(ݐ)  will (ݐ)

all vanish shortly after the input process ݔෝ(ݐ) has vanished, thus assuring zero residuals for the 

simulated ground motion. This filter, which was also used by Papadimitriou (1990), is motivated 

by Brune’s (1970, 1971) source model, based on which ߱௖, also known as the “corner 

frequency,” can be related to the geometry of the seismic source and the shear-wave velocity. 

Most ground motion databases, e.g., http://peer.berkeley.edu/nga/index.html, provide the corner 

frequency for a recorded motion.  

An example of a simulated ground motion before and after post-processing is shown in 

Figure 2.13. The left-hand side of this figure shows one realization of the fully nonstationary 

stochastic process (representing acceleration time-history) before and after post-processing by 
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the filter in (2.28), and their integrals over time (representing velocity and displacement time-

histories). The right-hand side shows the same motions after post-processing, drawn in a 

different scale. Observe that even though the difference between the acceleration processes is 

insignificant, the integration over time results in unacceptably high nonzero velocity and 

displacement residuals for the acceleration process that is not high-pass filtered. The velocity and 

displacement traces after post-processing are shown to have zero residual values. 

Figure 2.14 shows 5% damped pseudo-acceleration response spectra of the ground 

motions in Figure 2.13. As expected, the pre-processed motion causes high spectral intensities at 

long periods.  

It is noted that for stochastic dynamic analysis by TELM (Fujimura and Der Kiureghian 

2007), the high-pass filter can be included as a part of the structural model so that the discretized 

form of the input process in (2.12) is preserved. 

2.6 SUMMARY 

The response of a linear filter with time-varying parameters subjected to a white-noise process is 

normalized by its standard deviation and is multiplied by a deterministic time-modulating 

function to obtain the ground acceleration process. Normalization by the standard deviation 

separates the spectral (achieved by time-variation of the filter parameters) and temporal 

(achieved by multiplying the process with a time-modulating function) nonstationary 

characteristics of the process. This model is formulated in the continuous form by (2.5) and in 

the discrete form by (2.12). The discrete form is ideal for digital simulation and for use in 

nonlinear random vibration analysis by the tail-equivalent linearization method. The model is 

completely defined by the form of the filter IRF and the modulating function and their 

parameters. Suggested models for the IRF and the modulating function and their parameters are 

provided in Section 2.4. The stochastic model may have as few as six parameters that control the 

statistical characteristics of the ground motion. The simulated acceleration process according to 

(2.12) is then high-pass filtered in accordance with (2.28) to assure zero residual velocity and 

displacement, as well as to produce reliable response spectral values at long periods. Figure 2.15 

illustrates the steps involved in simulating a single ground acceleration time-history for a given 

set of model parameters.  
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Fig. 2.1 Schematic of input-output relationship for a linear filter. (a) Response of the 
linear filter to the unit impulse centered at ࢚ =  indicated by the shifted Dirac ,࣎
delta function ࢚)ࢾ − ࢚)ࢎ is the impulse response function ,(࣎ −  Response of (b) .(࣎
the linear filter to the white-noise excitation, (࢚)࢝, is the filtered white-noise 
process, (࢚)ࢌ. 
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Fig. 2.2  Representation of earthquake excitation as a filtered white-noise process. 
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Fig. 2.3  Realization of a stationary filtered white-noise process. 

 

 

 

 

 

Fig. 2.4  Realization of a time-modulated filtered white-noise process. 
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Fig. 2.5 Responses of a filter with time-varying parameters (࣓ࢌ denoting the filter 
frequency, ࢌࣀ denoting the filter damping ratio) to unit pulses at two time points. 

 

 

 

Fig. 2.6  Realization of a process with time-varying frequency content. 
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Fig. 2.7  Minimum acceptable discretization step, ∆࢚. 
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Fig. 2.8 Construction of a fully nonstationary stochastic process according to Eq. (2.5) 
with separable temporal and spectral nonstationarities. 
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Fig. 2.9 Sample stochastic process, showing zero-level up-crossings, positive minima, and 
negative maxima.  
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Fig. 2.10 Segments of (a) a narrow-band process and (b) a wide-band process. Observe 
the larger number of negative maxima and positive minima in the wide-band 
process. 
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Fig. 2.11  Piece-wise modulating function for selected parameter values. 

 

 

 

 

 

Fig. 2.12  Gamma modulating function for selected parameter values. 
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Fig. 2.13 Realization of a fully nonstationary acceleration process and its integrals before and after high-pass filtering. 
“Gamma” modulating function with ࢻ૚ = ૙. ૙૞, ૛ࢻ  = ૛. ૟૟, and ࢻ૜ = ૙. ૜૝ is used. Linearly decreasing filter 
frequency from 

࣊૛ࢌ࣓ = 6 Hz at ࢚ = ૙ s to 
࣊૛ࢌ࣓ = 2 Hz at ࢚ = ૛૙ s and a damping ratio of ࢌࣀ = 0.2 are selected. Corner 

frequency of the high-pass filter is 0.2 Hz. Observe the improved velocity and displacement residuals after post-
processing.  
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Fig. 2.14 Response spectra of the realizations in Fig. 2.13. Observe the high spectral 
content at long periods before post-processing. 
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Fig. 2.15 Procedure for generating a single realization of the ground acceleration process 
according to the proposed model. 
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3 Fitting to and Simulating a Target Ground 
Motion 

3.1 INTRODUCTION 

Given a target accelerogram (e.g., a recorded ground motion), the parameters of the stochastic 

ground motion model proposed in Chapter 2 may be identified by fitting the statistical 

characteristics of the stochastic model to those of the target accelerogram. As described in 

Section 2.3, these statistical characteristics include the time-varying standard deviation of the 

ground motion process, which controls the evolving intensity of the process, and the mean zero-

level up-crossing rate and the rate of negative maxima and positive minima, which together 

control the frequency content of the process. Once a set of model parameters has been identified, 

the model formulation is used to simulate realizations of the ground motion. These realizations 

are all different due to the stochasticity of the model, but they all have the same model 

parameters and expected statistical characteristics similar to those of the target accelerogram. 

The target accelerogram may be regarded as a single realization of the ground motion process for 

a specified set of model parameters, while the simulated motions may be regarded as other 

random samples of the process for the same set of model parameters. 

One of the advantages of simulating a target accelerogram is that this motion will be 

represented in a form appropriate for nonlinear random vibration analysis. Such analysis requires 

the input excitation to be stochastic, and recorded time-histories cannot be used directly. The 

discretized form in (2.12) is ideal for this type of analysis. The statistical characteristics of the 

stochastic model represent the key features of ground motions (i.e., ground motion intensity, 

duration, and frequency content) that are important for determination of structural response and 

estimation of damage induced from earthquakes. Therefore, fitting the model to target 

accelerograms and identifying their statistical characteristics is useful to study the properties of 
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earthquake ground motions. Furthermore, generating artificial samples of ground motions with 

specified statistical characteristics could be useful for various applications, such as parametric 

studies or determining the statistics of structural response.  

This chapter first explains how the stochastic model parameters are identified for a given 

target accelerogram. From Chapter 2 we know that the model parameters are categorized into 

two groups: modulating function parameters and linear filter parameters. Parameters of the 

modulating function are identified first and separate from parameters of the linear filter, which 

are identified next. A recorded motion is used to demonstrate the procedure. Then, a method to 

generate synthetic ground motions with the identified model parameters is described. Finally, 

several examples of recorded ground motions, their identified parameters, and simulations of the 

resulting stochastic model are presented. All recorded motions used in this chapter are taken 

from the Pacific Earthquake Engineering Research (PEER) Center strong motion database (see 

http://peer.berkeley.edu/nga/index.html). 

3.2 PARAMETER IDENTIFICATION 

As shown in the previous chapter, one of the main advantages of the proposed ground motion 

model is that the temporal and spectral characteristics are completely separable. Specifically, the 

modulating function ݐ)ݍ, હ) completely controls the evolving intensity of the process in time, 

while the filter IRF ݄[ݐ − ߬, ૃ(߬)] completely controls the evolving frequency content of the 

process. This means that the parameters of the modulating function and of the filter can be 

independently identified for a target accelerogram, providing ease in the numerical calculations.  

3.2.1 Identification of the Modulating Function Parameters 

For a target recorded accelerogram, ܽ(ݐ), we determine the modulating function parameters, હ, 

by matching the expected cumulative energy of the stochastic process, ܧ௫(ݐ), with the 

cumulative energy of the target accelerogram, ܧ௔(ݐ) = ׬ ܽଶ(߬)d߬௧଴ , over the duration of the 

ground motion, 0 ൑ ݐ ൑   is defined by (ݐ)௫ܧ ,(ݐ)௔ܧ ௡. Consistent with the definition ofݐ

(ݐ)௫ܧ  = ܧ ቈන ଶ(߬)d߬௧ݔ
଴ ቉ (3.1)
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           = ܧ ቊන ,߬)ݍ] હ)ܛ(߬)Tܝ]ଶd߬௧
଴ ቋ 

           = න ,߬)ଶݍ હ)d߬௧
଴  

where ܧ[. ] denotes the expectation. The second equality in (3.1) is obtained by substituting the 

discretized form of (ݐ)ݔ according to (2.14). Switching the orders of expectation and integration 

and noting that ܛ(߬)Tܝ is a zero-mean unit-variance process results in the last equality, which is 

of a convenient form as it depends only on the modulating function. Therefore, the modulating 

function parameters are obtained by matching the two cumulative energy terms: ܧ௔(ݐ) and ܧ௫(ݐ). This is done by minimizing the integrated squared difference between the two terms: 

 હෝ = argminહ න ቈන ,߬)ଶݍ હ)ܤ(߬)d߬௧
଴ − න ܽଶ(߬)ܤ(߬)d߬௧

଴ ቉ଶ dݐ௧೙଴  (3.2)

where હෝ represents the vector of identified parameters and (ݐ)ܤ is a weight function introduced 

to avoid dominance by the strong-motion phase of the record. (Otherwise, the tail of the record is 

not well fitted.) We have found the function: 

(ݐ)ܤ   = min ቊ[max௧ ,ݐ)଴ଶݍ હ଴)]ݍ଴ଶ(ݐ, હ଴) , 5ቋ (3.3)

where ݍ଴(ݐ, હ଴) is the modulating function obtained in a prior optimization without the weight 

function, to work well. The objective function in (3.2), which was earlier used by Yeh and Wen 

(1990) without the weight function, has the advantage that the integral ׬ ܽଶ(߬)ܤ(߬)d߬௧଴  is a 

relatively smooth function so that no artificial smoothing is necessary.  

As an example, Figure 3.1a shows component 090 of the accelerogram recorded at the 

LA - 116th Street School station during the 1994 Northridge earthquake. This motion is taken as 

the target accelerogram, ܽ(ݐ). The squared acceleration, ܽଶ(ݐ), and the cumulative energy, ׬ ܽଶ(߬)d߬௧଴ , for this record are shown in Figure 3.1b and 3.1c, respectively. Observe that ׬ ܽଶ(߬)d߬௧଴  is much smoother than either of ܽ(ݐ) or ܽଶ(ݐ), and hence it is easier and more 

accurate to fit a smooth function to the cumulative energy as is done in (3.2). 

The weight function for the target accelerogram is based on a piece-wise modulating 

function (2.22) (with ଵܶ = ଶܶ) and is presented in Figure 3.1d. Figures 3.1e and 3.1f show the 

weighted squared acceleration, ܽଶ(ݐ)(ݐ)ܤ, and the weighted cumulative energy ׬ ܽଶ(߬)ܤ(߬)d߬௧଴ , 
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respectively. Comparing Figure 3.1f to 3.1c (also 3.1e to 3.1b) demonstrates the necessity of a 

weight function. Observe that the plot in Figure 3.1c is rather sharp and quickly flattens reaching 

the total energy, while the plot in Figure 3.1f rises gradually and there is no sudden flattening. At 

any given time, the fitted modulating function is proportional to the slope of this plot. Therefore, 

“sudden flattening” implies that the fitted modulating function reaches nearly zero intensity too 

quickly, underestimating the tail of the record. This is undesirable because, even though the tail 

of the record has low intensity, it often has different frequency content from the strong shaking 

phase of the motion and can influence the response of a nonlinear structure.  

Figure 3.2a compares the two energy terms ܧ௫(ݐ) and ܧ௔(ݐ) when fitting to the target 

accelerogram. Using a piece-wise modulating function with parameters = ,ଵߙ) ,ଶߙ ,ଷߙ ଴ܶ, ଵܶ, ଶܶ), 

identified values of the fitted parameters are ߙଵ = 0.0744 g, ߙଶ = 0.413 sିଵ, ߙଷ = 0.552, ଴ܶ = 0.0004 s, ଵܶ = ଶܶ = 12.2 s. It can be seen that the fit is excellent at all time points. Figure 

3.2b shows the corresponding modulating function superimposed on the target recorded 

accelerogram.  

As a measure of the error in fitting to the cumulative energy of the target accelerogram, 

we use the ratio: 

 ߳௤ = ׬ (ݐ)௫ܧ| − ௧೙଴ݐd|(ݐ)௔ܧ ׬ ௧೙଴ݐd(ݐ)௔ܧ  (3.4)

The numerator is the absolute area between the two cumulative energy curves (see Fig. 3.2a) and 

the denominator is the area underneath the energy curve of the target accelerogram. For the 

example shown in Figure 3.2, ߳௤ = 0.0248. 

3.2.2 Identification of the Filter Parameters 

The parameters ߱଴ and ߱௡ defining the time-varying frequency of the filter [see (2.25)] and the 

parameters defining the damping ratio of the filter, ߞ௙(ݐ), control the predominant frequency and 

bandwidth of the process, respectively. Since these parameters have interacting influences, they 

cannot be identified independently for a target accelerogram. Therefore, we follow a procedure 

that first optimizes the frequency parameters for a series of constant damping ratios (by matching 

the cumulative count of zero-level up-crossings of the simulated and target motions), then selects 

the optimum set of frequency parameters and constant damping ratio by matching the cumulative 
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count of positive minima and negative maxima of the simulated and target motions. This 

procedure is for a constant damping ratio [see (2.26)] and is described in detail in this section. If 

the damping ratio is allowed to vary over time [see (2.27)], further steps are required for 

optimization, which are described in the next section.  

We first determine ߱଴ and ߱௡, while keeping the filter damping a constant ratio, ߞ௙. For a 

given ߞ௙, the parameters ߱଴ and ߱௡ are identified by minimizing the difference between the 

cumulative expected number of zero-level up-crossings of the process, i.e., ׬ ,0ା)ߥ ߬)d߬௧଴ , and 

the cumulative count ܰ(0ା, 0 ,ݐ of zero-level up-crossings in the target accelerogram for all (ݐ ൑ ݐ ൑   :௡. This is accomplished by minimizing the mean-square errorݐ

 ൣ ෝ߱଴൫ߞ௙൯, ෝ߱௡൫ߞ௙൯൧ = argminఠబ,ఠ೙ න ቈන ,0ା)ߥ d߬(߬)ݎ(߬ − ܰ(0ା, ௧(ݐ
଴ ቉ଶ dݐ௧೙଴  (3.5)

where ෝ߱଴൫ߞ௙൯ and ෝ߱௡൫ߞ௙൯ represent the identified values of frequency parameters dependent on 

the selected damping ratio, and ݎ(߬) is an adjustment factor as described below. As can be noted 

in the equations leading to (2.16), 0)ߥା, ߬) is an implicit function of the filter characteristics ߱௙(߬) and ߞ௙(߬), and therefore, ߱଴ and ߱௡ and ߞ௙. The same is true for ݎ(߬), as explained 

below.  

When a continuous function of time is represented as a sequence of discrete time points 

of equal intervals ∆ݐ, the function effectively loses its content beyond a frequency approximately 

equal to (ݐ∆2)/ߨ rad/s (see Fig. 2.7). This truncation of high-frequency components results in 

undercounting of level crossings. Since digitally recorded accelerograms are available only in 

discretized form, the count ܰ(0ା,  underestimates the true number of crossings of the target (ݐ

accelerogram by a factor per unit time, which we denote by ݎ(߬). Hence, to account for this 

effect when matching ׬ ,0ା)ߥ ߬)d߬௧଴  to ܰ(0ା, -we must multiply the rate of counted up ,(ݐ

crossings by the factor 1 ⁄(߬)ݎ . However, ݎ(߬) depends on the predominant frequency and 

bandwidth of the accelerogram. For this reason, it is more convenient to adjust the theoretical 

mean up-crossing rate [the first term inside the square brackets in (3.5)] by multiplying it by the 

factor ݎ(߬). The undercounting factor, ݎ(߬), may be approximated and incorporated in (3.5) as 

described in the following. 

For a stationary process with power spectral density Φ(߱), the mean zero-level up-

crossing rate with the frequencies beyond ߱௠௔௫ truncated is given by  
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,0ା)ߥ  ߱୫ୟ୶) = ߨ12 ඨ׬ ߱ଶΦ(߱)d߱ఠ೘ೌೣ଴׬ Φ(߱)d߱ఠ೘ೌೣ଴  (3.6)

The power spectral density for a stationary filtered white-noise process consistent with the IRF in 

(2.24) with time-invariant parameters is Φ(߱) = 1 [൫߱௙ଶ − ߱ଶ൯ଶ + ⁄[௙ଶ߱௙ଶ߱ଶߞ4 . Using (3.6), the 

undercount per unit time, denoted ݎ, can be calculated as the ratio: 

ݎ  = ,0ା)ߥ ߨ 2Δݐ⁄ ,0ା)ߥ( ∞)  (3.7)

Observe that ݎ is a function of ∆ݐ as well as the frequency characteristics of the process, i.e., ߱௙ 

and ߞ௙. In the present case, since ߱௙ is a function of ߬, ݎ is also a function of ߬. The solid lines in 

Figure 3.3 show the ratio ݎ(߬) plotted as a function of the filter frequency for the damping values ߞ௙ = 0.3, 0.4, 0.5, and 0.6 and for Δݐ = 0.01 and 0.02 s. These plots are nearly linear and hence 

for a specified discretization step, straight-line approximations (dotted lines in Fig. 3.3) are 

employed in place of (3.7). For Δݐ = 0.01 and 0.02 s, these approximations are 

,߬)ݎ  Δݐ = 0.01) = 1 − 0.00005൫߱௙(߬) + ௙(߬)൯ߞ − 0.000425߱௙(߬)ߞ௙(߬) (3.8)

,߬)ݎ  Δݐ = 0.02) = 1 − (߬)௙ߞ0.01 − 0.009߱௙(߬)ߞ௙(߬) (3.9)

It can be seen in Figure 3.3 that representation of a process at discrete-time points can result in 

undercounting of the zero-level up-crossings by as much as 2-25%, depending on the filter 

parameters and the time step used. 

Figure 3.4 compares the cumulative number of zero-level up-crossings of the target 

accelerogram (the Northridge record in the previous section) and the adjusted (by the factor ݎ(߬)) mean cumulative number of zero-level up-crossings of the fitted model process for ߞ௙ = 0.3. The corresponding optimal values of ߱଴ and ߱௡ are obtained for the specified damping 

ratio by solving (3.5), which is equivalent to minimizing the difference between the two plots 

shown in Figure 3.4. The optimized parameters ෝ߱଴ and ෝ߱௡ are listed in Table 3.1 for different 

values of the damping ratio, namely ߞ௙ = 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7. As a measure of the 

error in fitting to the cumulative number of zero-level up-crossings, we use 

 ߳ఠ = ׬ ቚ׬ ,൫0ାߥ ߬, ෝ߱଴, ෝ߱௡, d߬(߬)ݎ௙൯ߞ − ܰ(0ା, ௧଴(ݐ ቚ dݐ௧೙଴ ׬ ܰ(0ା, ௧೙଴ݐd(ݐ  (3.10)
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Values of this measure are also provided in Table 3.1. Each set of ෝ߱଴, ෝ߱௡, and ߞ௙ listed in Table 

3.1 results in a plot almost identical to Figure 3.4. In this figure, it is evident that the rate of up-

crossings (the slope of the curve) decays with time, indicating that the predominant frequency of 

the ground acceleration decreases with time.  

We need to select the optimum value of the filter damping ratio, ߞ௙, which controls the 

bandwidth of the process. We employ a simulation approach to estimate the average cumulative 

number of negative maxima and positive minima, which characterizes the bandwidth of the 

model process. The reason for using simulation rather than an analytical expression was 

explained in Section 2.3. Shown in Figure 3.5 is the cumulative number of negative maxima plus 

positive minima as a function of time for the target accelerogram (i.e., the Northridge record), as 

well as the estimated averages of the same quantity for sets of 10 simulations of the theoretical 

model with damping values ߞ௙ = 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7. The slopes of these lines should 

be regarded as instantaneous measures of the bandwidth parameter. By comparing the slopes of 

the target curve with those of the simulated curves, ߞ௙ is identified. The parameters ෝ߱଴ and ෝ߱௡ 

for each value of ߞ௙ are determined as described above and listed in Table 3.1. Note that the 

modulating function has no effect on this calculation. 

Several observations in Figure 3.5 are noteworthy. First note that the curves based on the 

theoretical model for the various values of ߞ௙ are nearly straight lines. This implies that a 

constant value of the filter damping ratio corresponds to a constant bandwidth of the process, 

even though the predominant frequency varies with time. This also implies that the bandwidth of 

the model process is solely controlled by the damping ratio of the filter. Secondly, observe that 

the curve based on the target accelerogram shows relatively small curvatures. This implies that 

the bandwidth of this particular accelerogram, as measured in terms of the rate of negative 

maxima and positive minima, remains more or less constant during the excitation. It can be seen 

that the theoretical curve with ߞ௙ = 0.3 best matches the bandwidth of the target accelerogram. A 

measure of error, similar to (3.10), is defined for fitting the bandwidth as the cumulative absolute 

difference between the cumulative numbers of negative maxima and positive minima of the 

target accelerogram and of the model process (i.e., the absolute area between the two curves in 

Fig. 3.5), normalized by the cumulative number for the target accelerogram (i.e., the area 

underneath the target curve in Fig. 3.5). This measure denoted by ߳఍, is also listed in Table 3.1. 
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Note that this error measure is smallest when ߞ௙ = 0.3. Also note that the error measure ߳ఠ is 

nearly the same for all damping values. 

In summary, if we select ߞ௙ = 0.3, the corresponding values of the frequency parameters 

are ෝ߱଴ = 39.7 rad/s and ෝ߱௡ = 4.68 rad/s (Table 3.1). These parameter values, together with the 

parameters identified for the modulating function, completely define the theoretical model fitted 

to the target accelerogram.  

3.2.3 Time-Varying Bandwidth 

Closer examination of the target curve in Figure 3.5 shows that the rate of occurrence of negative 

maxima and positive minima (the slope of the target curve at a given time) is higher during the 

initial 8 s and final 10 s of the motion relative to the 22 s middle segment. This phenomenon was 

observed to varying degrees in other accelerograms that were investigated. It appears that ground 

motions typically have broader bandwidths during their initial and final phases, as compared to 

their middle segments. This phenomenon may be attributed to mixing of wave forms: In the 

initial segment, P and S waves are mixed providing a broad bandwidth; the middle segment is 

dominated by S waves and, therefore, has a narrower bandwidth; while the final segment is a 

mixture of S waves and surface waves, again providing a broader bandwidth.    

To more accurately model the time-varying bandwidth of the accelerogram, the filter 

damping ratio can be made a function of time. To capture the three-segment behavior described 

above, we select three values of the damping ratio for the initial, middle, and final segments of 

the ground motion [see (2.27)]. The dashed line in Figure 3.6 shows the average cumulative 

number of negative maxima and positive minima for 10 simulations of the fitted model with the 

filter damping ratio ߞ௙(߬) = 0.4 for 0 ൏ ߬ ൑ 8 s, ߞ௙(߬) = 0.2 for 8൏ ߬ ൑ 30 s, and ߞ௙(߬) = 0.9 

for 30 ൏ ߬ ൑ 40 s. These values were selected by comparing the slopes of the target curve with 

those of the simulated curves for different constant damping ratios. The corresponding optimal 

values of the filter parameters [obtained by using the variable damping values in (3.5)] are ෝ߱଴ = 39.4 rad/s and ෝ߱௡ = 4.86 rad/s.  

It can be seen in Figure 3.6 that the refined model achieves a close fit to the time-varying 

bandwidth of the target accelerogram and is an improvement to the constant damping ratio 
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selected previously. The error measures for the variable damping ratio are ߳ఠ = 0.0127 and ߳఍ = 0.0461. 

3.3 GROUND MOTION SIMULATION  

For specified parameters of the modulating function and the filter IRF, a sample realization of 

the proposed stochastic ground motion model is generated by use of (2.12). This requires 

generation of the standard normal random variables ݑ௜, ݅ = 1, … , ݊, and their multiplication by 

the functions ݏ௜(ݐ), which are computed according to (2.13). After multiplication by the 

modulating function, the resulting motion is then post-processed, as described in Section 2.5, to 

represent an earthquake ground motion.  

It was previously mentioned that without the post-processing, the simulated motions may 

overestimate the response spectral values at long-period ranges. As an example, Figure 3.7a 

shows the response spectrum of the target accelerogram used in Section 3.2 (thick line), together 

with response spectra of 10 simulated motions with the variable-damping model described in 

Section 3.2.3 (thin lines). It can be seen that, while the simulated spectra match the target 

spectrum fairly closely for periods shorter than about 2.5 s, at longer periods they all exceed the 

target spectrum. Figure 3.7b compares the response spectrum of the target accelerogram with the 

response spectra of the 10 simulated motions, which are post-processed with the filter in (2.28) 

with ߱௖ =  rad/s. It can be seen that the post-processing significantly improves the ߨ0.5

estimation of spectral values at long periods without affecting the short-period range.  

The observed discrepancies between the target and simulated spectra in the short-period 

range of Figure 3.7b, though not significant, are partly due to the use of a single degree of 

freedom filter. Such a filter can characterize only a single dominant period in the ground motion. 

The selected recorded motion clearly shows multiple dominant periods. If a closer match is 

desired, one can select a two-degrees-of-freedom filter, in which case additional parameters will 

need to be introduced and identified. This is possible with the proposed model, but is not pursued 

in this study.  

Figure 3.8 shows the target accelerogram (the Northridge record in Section 3.2) together 

with two sample realizations simulated using the fitted stochastic model. Examples of other 

target accelerograms and their simulations are provided in Figures 3.9 to 3.12. Figures 3.9 to 
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3.11 show three different target accelerograms and two simulations for each accelerogram using 

a piece-wise modulating function, linear filter frequency, and (three-piece) variable damping 

ratio. The frequency for the high-pass filter is selected so that the response spectra of simulations 

are well fitted to the response spectra of the recorded motion for spectral periods up to 10 s. 

Functions that are suggested for the filter frequency and damping ratio in this study are for a 

typical ground motion. These functions may be refined or altered as desired by the user. For 

example, in Figure 3.12, instead of a linear function for the filter frequency, an exponential 

function with three parameters has been used.  

The simulated ground motions in Figures 3.8 to 3.12 have evolutionary statistical 

characteristics, i.e., time-varying intensity, predominant frequency, and bandwidth, which are 

similar to those of the target accelerogram. Hence, together with the target accelerogram, they 

can be considered as an ensemble of ground motions appropriate for design or assessment of a 

structure for those particular statistical characteristics. 

3.3.1 Variability of Ground Motion 

In the broader context of performance-based earthquake engineering (PBEE), an ensemble of 

ground motions that represents all possible ground shakings at a site is of interest (not only 

ground motions with statistical characteristics similar to those of a previously observed motion). 

The variability among such an ensemble comes from two different sources: (1) the randomness 

of ground motions for a specified set of model parameters (see the spread of response spectra for 

simulated motions at a given period in Figure 3.7 and the variability among the time-histories in 

Fig. 3.8) and (2) the randomness of the model parameters for the site of interest. The former is 

accounted for when fitting and simulating a target accelerogram (due to the stochastic nature of 

the model), but the latter is not.  

It is important to note that model parameters are actually random variables and an 

identified set of model parameters corresponding to a previously recorded motion is only one 

realization of these random variables for the earthquake and site characteristics that produced the 

recorded motion. To produce ground motions with appropriate variability for use in PBEE (i.e., 

for specified earthquake and site characteristics) the model parameters must be randomized to 

represent other ground motions that can result from such an earthquake.  
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Assigning probability distributions to the model parameters and constructing predictive 

relations between the model parameters and the earthquake and site characteristics are subjects 

of Chapter 4. The results of Chapter 4 allow one to predict the model parameters for a given set 

of earthquake and site characteristics (e.g., faulting mechanism, earthquake magnitude, distance 

to the rupture, and local soil conditions) without the need for a previously recorded motion. 

Chapter 5 focuses on randomly generating samples of model parameters for specified earthquake 

and site characteristics, and generating an ensemble of synthetic motions that have the natural 

variability of real ground motions and are appropriate for use in PBEE. 

 

 

Table 3.1  Parameter values and error measures. 

Damping Ratio 
 ௙ߞ 

Frequency Parameters (rad/s) 
 ෝ߱଴                       ෝ߱௡ 

Error Measures 
 ߳ఠ             ߳఍ 

0.2 40.8 4.16 0.0169 0.3212 

0.3 39.7 4.68 0.0167 0.0858 

0.4 38.6 4.49 0.0166 0.1925 

0.5 38.0 4.55 0.0165 0.2949 

0.6 37.4 4.56 0.0166 0.3649 

0.7 36.9 4.53 0.0168 0.4004 
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Fig. 3.1 Left: Target accelerogram, its corresponding squared acceleration, and 
cumulative energy. Right: Selected weight function, weighted squared 
acceleration, and weighted cumulative energy. (Respectively from top to bottom).   
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Fig. 3.2 (a) Cumulative energies in the target accelerogram and the fitted modulating 
function. (b) Corresponding modulating function superimposed on the target 
accelerogram. 
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Fig. 3.3 Adjustment factor for undercounting of zero-level up-crossings of a discretized 
process. 

 

 

 

Fig. 3.4 Cumulative number of zero-level up-crossings in the target accelerogram and 
fitted model. 
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Fig. 3.5 Fitting to cumulative count of negative maxima and positive minima with 
constant filter damping ratio. 

 

Fig. 3.6 Fitting to cumulative count of negative maxima and positive minima with variable 
filter damping ratio. 
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Fig. 3.7 Pseudo-acceleration response spectra of the target accelerogram (thick line) and 
10 realizations of the fitted model (thin lines): (a) Before high-pass filtering. (b) 
After high-pass filtering. 

 

Fig. 3.8  Target accelerogram and two simulations using the fitted model. 
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Fig. 3.9 Target accelerogram and two simulations using the fitted model. Target 
accelerogram is component 090 of the 1994 Northridge earthquake at the Newhall 
Fire Station. Corresponding model parameters are ࢻ૚ = ૙. ૜૟૛ g, ࢻ૛ =૙. ૞૛ૠ ିܛ૚, ࢻ૜ = ૙. ૟ૡ૛, ࢀ૙ = ૙. ૢ s, ࢀ૚ = ૞. ૜ s, and ࢀ૛ = ૞. ૝ s for a piece-wise 
modulating function and ࣓૙ = ૛૝. ૙ rad/s and ࣓࢔ = ૞. ૢૢ rad/s for a linear filter 
frequency function. Variable filter damping ratio is used where (࢚)ࢌࣀ = ૙. ૛૞ for ૙ ൏ ݐ ൑ ૚૜ s, (࢚)ࢌࣀ = ૙. ૚ૡ for ૚૜ ൏ ݐ ൑ ૛૞ s, and (࢚)ࢌࣀ = ૙. ૡ for ૛૞ ൏ ݐ ൑ ૝૙ 
s. Corresponding error measures are ࣕࢗ = ૙. ૙૛૞ૡ, ࣓ࣕ = ૙. ૙૛૞ૢ, and ࣕࣀ =૙. ૙૜ૠ૞. Frequency of ૙. ૚૛ Hz is selected for the high-pass filter. 
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Fig. 3.10 Target accelerogram and two simulations using the fitted model. Target 
accelerogram is component 111 of the 1952 Kern County earthquake at the Taft 
Lincoln School station. Corresponding model parameters are ࢻ૚ = ૙. ૙૞ૡ૞ g, ࢻ૛ = ૙. ૛૜૞ ିܛ૚, ࢻ૜ = ૙. ૞ૢ૚, ࢀ૙ = ૙. ૙૙૙૚ s, ࢀ૚ = ૜. ૡ s, and ࢀ૛ = ૡ. ૟ s for a 
piece-wise modulating function and ࣓૙ = ૛૝. ૡ rad/s and ࣓࢔ = ૚૜. ૞ rad/s for a 
linear filter frequency function. Variable filter damping ratio is used where (࢚)ࢌࣀ = ૙. ૛ for ૙ ൏ ݐ ൑ ૜ s, (࢚)ࢌࣀ = ૙. ૚ for ૜ ൏ ݐ ൑ ૚૝ s, and (࢚)ࢌࣀ = ૙. ૚૜ for 
14൏ ࢚ ൑ ૞૝. ૛ s. Corresponding error measures are ࣕࢗ = ૙. ૙૜૙૚, ࣓ࣕ = ૙. ૙૚૚૚, 
and ࣕࣀ = ૙. ૙૜ૡ૚. Frequency of ૙. ૙૞ Hz is selected for the high-pass filter. 
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Fig. 3.11 Target accelerogram and two simulations using the fitted model. Target 
accelerogram is component 090 of the 1971 San Fernando earthquake at the LA 
Hollywood Stor Lot station. Corresponding model parameters are ࢻ૚ =૙. ૙ૡ૛૚ g, ࢻ૛ = ૙. ૜૟ૢ ିܛ૚, ࢻ૜ = ૙. ૟ૡ૙, ࢀ૙ = ૙. ૙૙૛ s, ࢀ૚ = ૛. ૙ s, and ࢀ૛ = ૞. ૠ s for a piece-wise modulating function and ࣓૙ = ૜૙. ૛ rad/s and ࣓࢔ = ૚૟. ૞ rad/s for a linear filter frequency function. Variable filter damping 
ratio is used where (࢚)ࢌࣀ = ૙. ૝ for ૙ ൏ ݐ ൑ ૚૝ s and (࢚)ࢌࣀ = ૙. ૝૞ for 14൏ ࢚ ൑૛ૡ s. Corresponding error measures are ࣕࢗ = ૙. ૙૚૞૞, ࣓ࣕ = ૙. ૙૝ૢ૝, and ࣕࣀ = ૙. ૙૜૙ૢ. Frequency of ૙. ૛ Hz is selected for the high-pass filter. 
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Fig. 3.12 Target accelerogram and two simulations using the fitted model. Target 
accelerogram is component 090 of the 1994 Northridge earthquake at the 
Ventura Harbor & California station. Corresponding model parameters are ࢻ૚ = ૙. ૙૛૙૚ g, ࢻ૛ = ૙. ૙૙૝૟ ିܛ૚, ࢻ૜ = ૚. ૞૜, ࢀ૙ = ૙ s, ࢀ૚ = ૚૚. ૜ s, and ࢀ૛ = ૚ૠ. ૜ s for a piece-wise modulating function. Instead of a linear function, 
an exponentially decreasing function is selected for the filter frequency ࣓(࢚)ࢌ =૞૞. ૚ .൫−૙ܘܠ܍ ૛ૡૡ࢚૙.૞૞૝൯. Variable filter damping ratio is used where (࢚)ࢌࣀ =૙. ૞ for ૙ ൏ ݐ ൑ ૚૛ s, (࢚)ࢌࣀ = ૙. ૝ for 12൏ ࢚ ൑ ૜૛ s, and (࢚)ࢌࣀ = ૙. ૢૢ for 
32൏ ࢚ ൑ ૟૞ s. Corresponding error measures are ࣕࢗ = ૙. ૙૜ૡૢ, ࣓ࣕ = ૙. ૙૚૙૛, 
and ࣕࣀ = ૙. ૚૝ૠ. Frequency of ૙. ૛ Hz is selected for the high-pass filter. 
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4 Estimation of Model Parameters for Specified 
Earthquake and Site Characteristics 

4.1 INTRODUCTION 

In the previous chapter, parameters of the proposed stochastic ground motion model were 

identified for a target accelerogram by matching the evolutionary statistical characteristics of the 

model to those of the target accelerogram. Once the model parameters are identified, it is easy to 

produce an ensemble of ground motion realizations as described in Section 3.3. It is important to 

recall that this ensemble of ground motion realizations is created from one specific set of model 

parameters that corresponds to the target accelerogram. A previously recorded ground motion 

that is considered as the target accelerogram is only one sample observation of all the possible 

ground motions that can occur at a site of interest from an earthquake of specified characteristics. 

Therefore, it is more realistic to treat the model parameters that define the target accelerogram as 

random variables when simulating ground motions for specified earthquake and site 

characteristics. 

To illustrate the above concept, Figure 4.1 shows a real recorded motion and eight 

simulated motions. The simulated motions on the left are generated using model parameters 

identical to those of the recorded motion (according to the methods described in Chapter 3). 

Observe that even though they are different, they all have nearly identical overall characteristics, 

e.g., intensity, duration, frequency content. The simulated motions on the right are generated 

using different model parameters that may result from the earthquake and site characteristics that 

produced the recorded motion. The simulation details are presented in Chapter 5. The variability 

observed in the intensity, duration and frequency content of these motions is significantly more 

than that of the set on the left and is representative of the natural variability observed in recorded 

ground motions for a specified set of earthquake and site characteristics. Such suite of simulated 

motions (i.e., on the right side of Fig. 4.1) is of interest in performance-based earthquake 
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engineering (PBEE). The question is: how do we predict possible realizations of the model 

parameters for specified earthquake and site characteristics? This chapter focuses on answering 

this question. 

As reported in Chapter 1, many ground motion models have been developed in the past. 

The vast majority of these models limit their scope to generating synthetics similar to a target 

recorded motion. As a result, all the generated synthetic motions with these models correspond to 

identical model parameters and do not provide a realistic representation of ground motion 

variability for a specified set of earthquake and site characteristics. In this study, we go one step 

further by relating the parameters of our model to the earthquake and site characteristics. 

Furthermore, by accounting for the uncertainty in the model parameters, i.e., assuming that the 

model parameters for given earthquake and site characteristics are random, we are able to 

reproduce in the synthetics the variability present in real ground motions, which has been lacking 

in previous models. There have been a few exceptions in the literature including the paper by 

Pousse et al. (2006), in which the parameters of an improved version of the model by Sabetta and 

Pugliese (1996) are fitted to the K-Net Japanese database, and the work by Alamilla et al. (2001), 

in which the parameters of a model similar to that proposed by Yeh and Wen (1989) were fitted 

to a database of ground motions corresponding to the subduction zone lying along the southern 

coast of Mexico. In both cases, the model parameters are randomized to achieve the variability 

present in real ground motions. Stafford et al. (2009) also relate the parameters of their model to 

the earthquake and site characteristics, but their model does not account for spectral 

nonstationarity of ground motion. It is noted that some recent seismological models do properly 

account for the variability in ground motions. Typically, this is done by varying the values of 

source parameters, as in Liu et al. (2006), Hutchings et al. (2007), Causse et al. (2008), and 

Ameri et al. (2009). However, these models are difficult to use in engineering practice due to the 

unavailability of the model source parameters during the structural design process. 

This chapter focuses on developing empirical predictive equations for the stochastic 

model parameters in terms of earthquake and site characteristics. The stochastic ground motion 

model is fitted to a large number of accelerograms with known earthquake and recording site 

characteristics, resulting in a database of the model parameters for the given characteristics. By 

regressing the former against the latter, predictive relations for the model parameters in terms of 

the earthquake and site characteristics are developed. For a specified set of earthquake and site 
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characteristics, an “average” ground motion may then be generated by using the mean model 

parameter values, while an entire suite of motions can be generated by using other possible 

values of model parameters obtained from randomizing the regression error. This process can be 

repeated for different sets of earthquake and site characteristics, thus generating an entire suite of 

artificial ground motions that are appropriate for design or analysis in PBEE without any need 

for previously recorded motions. 

The methodology for constructing predictive relations for the model parameters is quite 

general and is proposed at the beginning of this chapter. This methodology is then demonstrated 

by using a database of strong ground motions on stiff soil, which is a subset of the Next 

Generation Attenuation (NGA) database. Predictive equations are constructed for each model 

parameter in terms of the fault mechanism, earthquake magnitude, source-to-site distance, and 

local soil type. Marginal and conditional distributions are assigned to each model parameter. 

Finally correlations between the model parameters are determined empirically. The results of this 

chapter are used in Chapter 5 for random generation of model parameters and simulation of a 

suite of synthetic ground motions for specified earthquake and site characteristics, which is 

ultimately of interest in PBEE.  

4.2 METHODOLOGY FOR DEVELOPING PREDICTIVE EQUATIONS 

For PBEE our interest is in simulating ground motions for a given set of earthquake and site 

characteristics, i.e., fault mechanism, earthquake magnitude, source-to-site distance, local soil 

type. In this context, the parameters identified for a specific recorded ground motion are regarded 

as a single realization of the parameter values that could arise from earthquakes of similar 

characteristics on similar sites. To develop a predictive model of the ground motion, it is 

necessary to relate the model parameters to the earthquake and site characteristics. For this 

purpose, we identify the model parameters for a dataset of recorded ground motions with known 

earthquake and site characteristics. Using this data, regression models are then developed to 

relate the stochastic model parameters to the earthquake and site characteristics.  

It is a common practice in developing predictive equations of ground motion intensities 

to work with the logarithm of the data to satisfy the normality requirement of the regression 

error. This transformation implies the lognormal distribution for the predicted intensity. In our 
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case, the data for several of the model parameters show distinctly non-lognormal behavior, 

including negative values and bounds, which cannot be addressed by a logarithmic 

transformation. To account for this behavior, each model parameter is assigned a marginal 

probability distribution based on its observed histogram. This distribution is then used to 

transform the data to the normal space, where empirical predictive equations are constructed. In 

effect, this is a generalization of the logarithmic transformation.  

Let ߠ௜ denote the ݅th parameter of the stochastic ground motion model, ݅ = 1, … , ݊௣, 

where ݊௣ is the total number of parameters, and let Fఏ೔(ߠ௜) denote the marginal cumulative 

distribution function fitted to the data for ߠ௜. The marginal transformations:  

௜ݒ  = ΦିଵൣFఏ೔(ߠ௜)൧ ݅ = 1, … , ݊௣ (4.1)

where Φିଵ[. ] denotes the inverse of the standard normal cumulative distribution function, then 

define a set of standard normal random variables ݒ௜. Relations of the form in (4.1) transform the 

data on ߠ௜ to data on ݒ௜, which are then regressed against variables defining the earthquake and 

site characteristics. This leads to predictive equations of the form:  

௜ݒ  = ,௜(Earthquakeߤ Site, ઺௜) + ݁௜ ݅ = 1, … , ݊௣ (4.2)

where ߤ௜ is a selected functional form for the conditional mean of ݒ௜ given the earthquake and 

site characteristics, ઺௜ is the vector of regression coefficients, and ݁௜ represents the regression 

error that has zero mean and is normally distributed. Another important piece of information for 

predicting model parameters is the correlation between ߥ௜ and ߥ௝ for ݅ ് ݆, which is the same as 

the correlation between the corresponding ݁௜ and ௝݁. These correlations are determined 

empirically. Additionally, it is assumed that the error terms ݁௜ are jointly normally distributed. 

Under this assumption, knowledge of the predictive equations of the form in (4.2) and the 

correlation coefficients is sufficient to simulate random samples of variables ߥ௜, ݅ = 1, … , ݊௣, for 

specified earthquake and site characteristics (see Chapter 5 for simulation details). Equations 

(4.1) are then used in reverse to determine the corresponding simulations of the model 

parameters in the physical space. 

The following sections present the specifics of the stochastic ground motion model used 

in this chapter; propose a simplified method of parameter identification that is appropriate for 

analyzing a large database of recorded motions; and elaborate on the selected ground motion 

database, the fitted distributions Fఏ೔(ߠ௜), the functional forms of the predictive Equations (4.2), 
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the method of analysis used to estimate the regression coefficients and the error variance in (4.2), 

and the correlation analysis between the transformed model parameters ߥ௜. 
4.3 STOCHASTIC GROUND MOTION MODEL 

The stochastic ground motion model proposed in Chapter 2 is employed. The stochastic process (ݐ)ݔ is obtained by time-modulating a normalized filtered white-noise process with the filter 

having time-varying parameters. It is formulated according to (2.5) in the continuous form and 

according to (2.12) in the discrete form. The simulated process is eventually high-pass filtered 

according to (2.28) to obtain ݖሷ(ݐ), which represents the acceleration time-history of the 

earthquake ground motion. This high-pass filtering does not have a significant influence on the 

statistical characteristics of the process. Therefore, when fitting to a recorded motion, as done in 

Chapter 3, the process (ݐ)ݔ rather than ݖሷ(ݐ) is used. (ݐ)ݔ is constructed by multiplication of the 

deterministic time-modulating function ݐ)ݍ, હ), and a unit-variance process that is obtained as 

the response of a linear filter defined by the IRF ݄[ݐ − ߬, ૃ(߬)] to a white noise excitation. The 

functional forms and parameters of ݐ)ݍ, હ) and ݄[ݐ − ߬, ૃ(߬)] separately control the temporal 

and spectral characteristics of the ground motion process. 

For the present study, the gamma modulating function according to (2.23) is used. The 

set of parameters for this model is હ = ,ଵߙ) ,ଶߙ ,ଷߙ ଴ܶ). The filter IRF corresponding to (2.24), 

which represents the pseudo-acceleration response of a single-degree-of-freedom linear 

oscillator, is employed. The set of time-varying parameters for the filter is ૃ(߬) =[߱௙(߬),  ௙(߬)]. The subsequent sections provide more details on selection and identification ofߞ

these model parameters. 

4.3.1 Model Parameters 

Since we wish to relate the parameters of the modulating function to the earthquake and site 

characteristics of recorded motions, it is desirable that these parameters be defined in terms of 

ground motion properties that have physical meaning. For this reason, (ߙଵ, ,ଶߙ  ଷ) are related toߙ

three physically based variables (ܫ ҧ௔, ,ହିଽହܦ ܫ ,௠௜ௗ). The first variableݐ ҧ௔, represents the expected 
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Arias intensity (Arias, 1970) of the acceleration process (ݐ)ݔ — a measure of the total energy 

contained in the motion — and is defined as  

ܫ  ҧ௔ = E ቈ 2gߨ න ௧೙଴ݐd(ݐ)ଶݔ ቉ = 2gߨ න ,ݐ)ଶݍ હ)dݐ௧೙଴  (4.3)

where g is the gravitational acceleration and ݐ௡ denotes the total duration of the motion. The 

second equality above is obtained by changing the orders of the expectation and integration 

operations and noting that ݍଶ(ݐ, હ) is the variance of the process (ݐ)ݔ [see (2.4)]. ܦହିଽହ 

represents the effective duration of the motion. Here, motivated by the work of Trifunac and 

Brady (1975), we define ܦହିଽହ as the time interval between the instants at which the 5% and 

95% of the expected Arias intensity are reached. This definition is selected, since it relates to the 

strong shaking phase of the time-history, which is critical to nonlinear response of structures. ݐ௠௜ௗ is the time at the middle of the strong shaking phase. Based on investigation of many 

ground motions in our database, we have selected ݐ௠௜ௗ as the time at which 45% level of the 

expected Arias intensity is reached. Figure 4.2 illustrates identification of the above three 

parameters for an acceleration time-history. 

The gamma probability density function (PDF) (Ang and Tang 2006) is written as  

 ்݂ ,ݐ) ܽ, ܾ) = ܽ௕Γ(ܾ) ௕ିଵ݁ି௔௧ݐ if ݐ ൒ 0  

                  = 0 otherwise  

(4.4)

where ܽ and ܾ are the parameters of the distribution and Γ(ܾ) = ׬ ஶ଴ݐ௕ିଵ݁ି௧dݐ  is the gamma 

function with ܾ ൐ 0. For the selected modulating function, ݍଶ(ݐ, હ) is proportional to a shifted 

gamma PDF having parameter values ܽ = ܾ ଷ andߙ2 = ଶߙ2 − 1. One can write 

,ݐ)ଶݍ  હ) = ݐ)ଵଶߙ − ଴ܶ)(ଶఈమିଵ)ିଵ݁ିଶఈయ(௧ି బ்) if ݐ ൒ ଴ܶ     = 0       otherwise  
(4.5)

Let ݐ௣ represent the ݌-percentile variate of the gamma cumulative distribution function. Then ݐ௣ 

is given in terms of the inverse of the gamma cumulative distribution function at probability 

value ݌%. Since these percentages are not affected by scaling of the gamma probability density 

function, it follows that ݐ௣ is uniquely given in terms of the parameters ߙଶ and ߙଷ and the 

probability ݌%. We can write 

ହିଽହܦ  = ଽହݐ − ହ (4.6)ݐ
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௠௜ௗݐ  = ସହ (4.7)ݐ

For given values of ܦହିଽହ and ݐ௠௜ௗ, parameters ߙଶ and ߙଷ can be numerically computed from 

the above two equations. In this study, a nonlinear optimization approach is employed to solve 

(4.6) and (4.7) for ߙଶ and ߙଷ, which requires initial guesses for optimized values of the two 

parameters. We have found that a good initial guess is obtained by setting the mode of the 

gamma distribution, (ܾ − 1) ܽ⁄ , equal to ݐ௠௜ௗ, which results in solving (4.6) for one variable 

only. This approach is computationally efficient and is made possible due to the selected 

functional form of the modulating function. The remaining parameter, ߙଵ, is directly related to 

the expected Arias intensity. Substituting (4.5) into (4.3) gives 

ܫ  ҧ௔ = 2gߨ  න ݐ)ଵଶߙ − ଴ܶ)(ଶఈమିଵ)ିଵ݁ିଶఈయ(௧ି బ்)dݐ௧೙଴  

= 2gߨ  ଵଶߙ න ݐ) − ଴ܶ)ଶఈమିଶ݁ିଶఈయ(௧ି బ்)dݐ௧೙଴   
= 2gߨ ଵଶߙ Γ(2ߙଶ − ଶఈమିଵ(ଷߙ2)(1  

(4.8)

For simulation purposes, ଴ܶ is assumed to be 0. Note that the expression inside the integral of the 

second equality above is proportional to the gamma PDF. Assuming that ݐ௡, the total duration of 

motion, is sufficiently long for the integral of the PDF from 0 to ݐ௡ to be effectively equal to 

unity, the last equality is obtained, which results in an analytical expression for ߙଵ: 

ଵߙ  = ඨ2gߨ ܫ ҧ௔ ଶߙଶఈమିଵΓ(2(ଷߙ2) − 1) (4.9)

After estimating ߙଶ and ߙଷ, (4.9) is used to compute ߙଵ for a given value of ܫ ҧ௔. In the remainder 

of this study, we work only with (ܫ ҧ௔, ,ହିଽହܦ  ௠௜ௗ) as the modulating function parameters. Anyݐ

simulated values of these parameters are used in (4.6), (4.7), and (4.9) to back-calculate the 

corresponding values of (ߙଵ, ,ଶߙ  .ଷ), which are then used to compute the modulating functionߙ

For the filter frequency a linear function is adopted. However, instead of representing this 

function with the two parameters ߱଴ and ߱௡ as was done in (2.25), we represent it as 

 ߱௙(ݐ) = ߱௠௜ௗ + ߱Ԣ(ݐ − ௠௜ௗ) (4.10)ݐ

Here, ߱௠௜ௗ represents the filter frequency at ݐ௠௜ௗ, and ߱Ԣ represents the rate of change of the 

filter frequency with time. Later, in Chapter 5, limits will be assigned to (4.10) to avoid 

simulating unreasonably high or low frequencies. For the filter damping ratio a constant value, 
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 ௙, as in (2.26) is employed. This is done for simplicity and convenience considering that theߞ

stochastic model must be fitted to a large number of recorded motions. Observed invariance of 

the bandwidth parameter for most recorded motions motivates this simplifying approximation. 

In summary, the physically based parameters (ܫ ҧ௔, ,ହିଽହܦ ,௠௜ௗ) and (߱௠௜ௗݐ ߱ᇱ,  (௙ߞ

completely define the time modulation and the evolutionary frequency content of the 

nonstationary ground motion model. Our simulation procedure is based on generating samples of 

these parameters for given earthquake and site characteristics. 

4.3.2 Identification of Model Parameters for a Target Accelerogram 

As described in Chapter 3, given a target accelerogram, the model parameters are identified by 

matching the properties of the recorded motion with the corresponding statistical measures of the 

process. The physically based modulating function parameters (ܫ ҧ௔, ,ହିଽହܦ  ௠௜ௗ) are naturallyݐ

matched with the Arias intensity, the effective duration (the time between 5% and 95% levels of 

Arias intensity), and the time to the middle of the strong shaking phase (time to the 45% level of 

Arias intensity) of the recorded motion, respectively. In determining ݐ௠௜ௗ for a recorded 

accelerogram, sometimes it is necessary to make a time shift. This is because the zero point 

along the time axis of a record is rather arbitrary. (There is no standard as to where to set the 

initial point of an acceleration signal.) In fact, some records in the NGA database have long 

stretches of zero motion in their beginning. Four such examples are provided in Figure 4.3. In 

such cases, a better fit is achieved by identifying an additional parameter, ଴ܶ ൒ 0. This is done 

by replacing (4.7) with 

ହିସହܦ  = ସହݐ − ହ (4.11)ݐ

where ܦହିସହ is the time interval between 5% and 45% levels of Arias intensity of the record. 

Similar to the case for ଴ܶ = 0, solutions to ߙଶ and ߙଷ are obtained by nonlinear optimization on 

(4.6) and (4.11). A good initial guess is obtained by assuming equality between the mode of the 

gamma distribution, (ܾ − 1) ܽ⁄ , and ܦ଴.଴ହିସହ, which results in solving (4.6) for one variable 

only. ܦ଴.଴ହିସହ represents the time between 0.05% to 45% levels of Arias intensity of the record. 

0.05%, which is a small percentile effectively denoting the beginning of the motion, is chosen to 

avoid the long stretches of zero intensity observed at the beginning of records, which are not of 

interest in simulation. After identification of (ߙଵ, ,ଶߙ  ଷ), the 45-percentile variate of theߙ
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corresponding gamma distribution, ݐସହ, is calculated. Finally, ݐ௠௜ௗ is determined by (4.7) and ଴ܶ, 

if desired, is computed by  

 ଴ܶ = ଴ିସହܦ − ସହ (4.12)ݐ

As mentioned earlier, the model parameters (߱௠௜ௗ, ߱Ԣ,  ௙) control the evolvingߞ

predominant frequency and bandwidth of the process. As a measure of the evolving predominant 

frequency of the recorded motion, as in Chapter 3, we consider the rate of zero-level up-

crossings, and as a measure of its bandwidth, we consider the rate of negative maxima (peaks) 

and positive minima (valleys). In Chapter 3, the evolution of the predominant frequency was 

determined by minimizing the difference between the cumulative mean number of zero-level up-

crossings of the process in time and the cumulative count of zero-level up-crossings of the 

recorded accelerogram. The bandwidth parameter, ߞ௙, was determined by minimizing the 

difference between the mean rate of negative maxima and positive minima and the observed rate 

of the same in the recorded accelerogram. The process required an iterative scheme, since the 

predominant frequency and bandwidth of the process are interrelated. That method is ideal if the 

purpose is to closely match the statistical characteristics of a single target accelerogram. For the 

purpose of identifying the model parameters for a large number of recorded ground motions, 

such high level of accuracy is not necessary. Instead, the following simpler method is adopted to 

reduce computational effort, while providing sufficient accuracy. 

It is well known that the mean zero-level up-crossing rate of the stationary response of a 

second-order filter (i.e., the filter used in this study with time-invariant parameters) to a white-

noise excitation is equal to the filter frequency (Lutes and Sarkani 2004). This motivates the idea 

of directly approximating the filter frequency ߱௙(ݐ) by the rate of change of the cumulative 

count of zero-level up-crossings of the target accelerogram (see Fig. 4.4a). In order to identify 

the two parameters ߱௠௜ௗ and ߱Ԣ for a given record, a second-order polynomial is fitted to the 

cumulative count of zero-level up-crossings of the accelerogram. This is done in a least-squares 

sense at equally spaced time points starting from the time at 1% level of Arias intensity to the 

time at 99% level of Arias intensity (a total of 9 points are selected). The fitted polynomial is 

then differentiated to obtain a linear estimate of the filter frequency as a function of time. The 

value of this line at ݐ௠௜ௗ represents the estimate of ߱௠௜ௗ, and its slope represents the estimate of ߱Ԣ. Figure 4.4a demonstrates this fitting process for the component 090 of the accelerogram 

recorded at the Silent Valley – Poppet Flat station during the 1992 Landers earthquake. 
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Comparisons of the estimated filter frequency with those computed by the more exact method 

described in Chapter 3 for several accelerograms revealed that the method is sufficiently accurate 

for the intended purpose. 

 To estimate the filter damping ratio, the cumulative number of negative maxima plus 

positive minima for the target accelerogram is determined. This value is compared with the 

estimated averages of the same quantity for sets of 20 simulations of the theoretical model with 

the already approximated filter frequency and the set of damping values ߞ௙ = 0.1, 0.2, … , 0.9 

(see Fig. 4.4b). Interpolation between the curves is used to determine the optimal value of ߞ௙ that 

best matches the curve for the target accelerogram. This is done by calculating the cumulative 

difference between the target and simulated curves, ׬ (target௧೙଴ − average of 20 simulations for ߞ௙)dݐ for each value of ߞ௙, and interpolating to find 

the ߞ௙ value that gives a zero cumulative difference. When ߞ௙ is less than 0.1, interpolation is 

performed by assuming a zero damping ratio for a curve that falls on the horizontal axis (i.e., 

representing a motion with zero numbers of negative maxima and positive minima). For this 

analysis, only the time interval between 5% to 95% levels of Arias intensity is considered, where 

it is more likely for ߞ௙ to remain constant. This procedure is a simplification of the more refined 

fitting method used in Chapter 3, as it neglects the influence of the filter damping on the 

predominant frequency. Figure 4.4b shows application of this method to the Landers earthquake 

record mentioned above. 

It is important to note that the modulating function has no influence on the zero-level up-

crossings, or the number of negative maxima and positive minima of the process. This facilitates 

estimation of the filter parameters after determining the modulating function parameters. 

4.4 STRONG MOTION DATABASE 

The strong motion database used in this study is a subset of the PEER NGA (Pacific Earthquake 

Engineering Research Center: Next Generation Attenuation of Ground Motions Project; see 

http://peer.berkeley.edu/smcat/.) database, and a subset of the data used in the development of 

the Campbell-Bozorgnia NGA ground motion model (Campbell and Bozorgnia 2008). These 

data were collected for the Western United States (WUS), but some well-recorded, large-
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magnitude earthquakes from other regions, which were deemed to be applicable to the WUS, are 

also included (Abrahamson et al. 2008). As in Campbell and Bozorgnia (2008), the database 

employed in this study excludes aftershocks. Furthermore, the accelerograms in the database are 

representatives of “free-field” ground motions generated from shallow crustal earthquakes in 

active tectonic regions. 

 

Earthquake and site characteristics:  

The NGA database lists many characteristics of each earthquake and recording site. Considering 

the type of information that is commonly available to a design engineer, four parameters are 

selected for the present study: ൫ܨ, ,ܯ ܴ௥௨௣, ௌܸଷ଴൯. ܨ corresponds to the type of faulting with ܨ = 0 denoting a strike-slip fault and ܨ = 1 denoting a reverse fault (normal faults are not 

considered, since few records are available); ܯ represents the moment magnitude of the 

earthquake; ܴ௥௨௣ represents the closest distance from the recording site to the ruptured area, and 

ௌܸଷ଴ represents the shear-wave velocity of the top 30 m of the site soil. Among these parameters, ܨ and ܯ characterize the earthquake source, ܴ௥௨௣ characterizes the location of the site relative to 

the earthquake source, and ௌܸଷ଴ characterizes the local soil conditions. These parameters are 

believed to have the most significant influences on the ground motion at a site and traditionally 

have been considered in predicting ground motion intensities. Additional parameters can be 

included to refine the predictive equations in future studies.   

 

Enforced boundaries: 

During the design process, two levels of ground motion are commonly considered: the service-

level ground motion and the Maximum Considered Earthquake (MCE) ground motion (see, for 

example, the 2008 NEHRP provisions by the Building Seismic Safety Council (BSSC), or the 

report by Holmes et al. (2008) on seismic performance objectives for tall buildings). While 

response-spectrum analysis is sufficient to evaluate a structure for the service-level motion 

during which the structure is expected to remain elastic, response-history dynamic analysis is 

usually recommended or required to capture the likely nonlinear behavior of a structure 

subjected to the MCE motion. Many predictive models are available that provide the spectral 

ordinates of ground motion required for the response-spectrum analysis, including the recently 
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developed and commonly used NGA ground motion prediction equations by Abrahamson and 

Silva (2008), Boore and Atkinson (2008), Campbell and Bozorgnia (2008), Chiou and Youngs 

(2008), and Idriss (2008). Aiming at a predictive model of ground motion time-histories for the 

MCE event, we consider only earthquakes having 6.0 ൑  By limiting the database to large .ܯ

earthquakes, the predictive equations presented in this study are customized for earthquakes that 

are capable of damage and can cause nonlinear behavior in structures. 

In the interest of separating the effects of near-fault ground motions, such as the 

directivity and fling effects, which could dominate the spectral content of the ground motion, 

only earthquakes with 10 km ൑ ܴ௥௨௣ are considered. A separate study for simulation of near-

fault ground motions is under way. Furthermore, an upper limit ܴ௥௨௣ ൑ 100 km is selected to 

exclude ground motions of small intensity. 

In the interest of separating the effect of soil nonlinearity, which can also strongly 

influence the spectral content of the ground motion, the lower limit 600 m/s ൑ ௌܸଷ଴ is selected. 

For smaller ௌܸଷ଴ values, one can generate appropriate motions at the firm soil layer and 

propagate through the softer soil deposits using standard methods of soil dynamics that account 

for the nonlinearity in the shear modulus and damping of the soil.  

 

Database: 

Figure 4.5 shows a summary of the selected earthquakes from the Campbell-Bozorgnia NGA 

database within the above-stated limits. These constraints reduced the data set used in the 

analysis to 31 pairs of horizontal recordings from 12 earthquakes for strike-slip type of faulting, 

and 72 pairs of horizontal recordings from 7 earthquakes for reverse type of faulting. The two 

horizontal components for each recording are orthogonal and along the “as-recorded” directions 

(as reported in the NGA database). Inclusion of both components not only doubles the sample 

size in the following statistical analysis (31 ൈ 2 + 72 ൈ 2 = 206 data points), but it also allows 

consideration of the correlations between the two components when simulating orthogonal 

horizontal components of ground motions (see Chapter 7). The selected earthquakes and the 

number of recordings for each earthquake are listed in Table 4.1. Observe that the number of 

recordings for each earthquake varies; this is accounted for in the regression analysis. Table 4.2 

provides a list of the recording sites.  
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Even though the imposed constraints on the earthquake and site characteristics have 

reduced the number of recordings in our database, the resulting predictive equations are simpler 

(additional terms that reflect influences of low magnitude earthquakes, near-fault ground 

motions, distant earthquakes, and nonlinearity of soft soil are not required) and more reliable for 

the intended application of nonlinear response-history analysis for the MCE event. Note that the 

selection of the database in no way limits the methodology presented in this study.  

4.5 IDENTIFIED MODEL PARAMETERS FOR THE SELECTED DATABASE 

For each record in the ground motion database, the model parameters (ܫ ҧ௔, ,ହିଽହܦ ,௠௜ௗݐ ߱௠௜ௗ, ߱ᇱ,  ௙) are identified according to the simplified methods described inߞ

Section 4.3.2. This results in observational data for the model parameters which allow us to 

investigate the statistical behavior of these parameters for the selected database. Numerical 

summaries of data are provided in Table 4.3 including the observed minimum and maximum 

values, sample mean, standard deviation, and coefficient of variation. These data are also 

graphically represented by their normalized frequency diagrams and empirical cumulative 

distribution functions, provided, respectively, in Figure 4.6 and Figure 4.7. 

Arias intensity, ܫ௔, has the largest coefficient of variation and ranges between 0.000275 

to 2.07 s.g. with a mean of 0.0468 s.g. It is observed that the duration parameter ܦହିଽହ varies 

between 5.37 to 41.29 s, with a mean of 17.25 s. The parameter ݐ௠௜ௗ assumes values between a 

fraction of a second to 35.15 s with a mean of 12.38 s. For some records, ݐ௠௜ௗ is found to be 

greater than ܦହିଽହ due to a long stretch of low intensity motion in the beginning of the record. 

Owing to the choice of the modulating function and its flexible shape, this long stretch may be 

replicated in the simulated motions, if desired. 

It is interesting to note that the observed predominant frequency at the middle of strong 

shaking, ߱௠௜ௗ/2ߨ, ranges from 1.31 to 21.6 Hz for the records in the data set, with a mean 

value of 5.87 Hz. The fact that only rock and stiff soils are considered is the reason for this 

relatively high mean value. It is also interesting to note that ߱ᇱ/2ߨ is more likely to be negative 

than positive (see the middle bottom graph in Fig. 4.6), i.e., the predominant frequency of the 

ground motion during the strong shaking phase is more likely to decrease than increase with 

time. This is consistent with our expectation. However, a small fraction of the recorded motions 
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in the database shows positive but small ߱ᇱ/2ߨ values (i.e., the target plot similar to the one in 

Figure 4.4a shows a slightly positive or, in rare cases, irregular curvature). Finally, the observed 

filter damping ratio ߞ௙, which is a measure of the bandwidth of the ground motion process, is 

found to range from 0.027 to 0.767 with a mean of 0.213. 

4.5.1 Distribution Fitting 

After identifying the model parameter values by fitting to each recorded ground motion in the 

database, a probability distribution is assigned to the sample of values for each parameter. The 

form of this distribution is inferred by visually inspecting the corresponding histogram and 

examining the fit to the corresponding empirical cumulative distribution function (CDF). The 

parameters of the chosen probability distribution are then estimated by the method of maximum 

likelihood. Finally the fit is examined by the Kolmogorov-Smirnov (K-S) goodness-of-fit test to 

identify the optimal distribution when alternative options are available. 

Figure 4.6 shows the fitted probability density functions (PDFs) superimposed on the 

normalized frequency diagrams of the model parameters. Fitted distributions are listed in Table 

4.4. As commonly assumed in the current practice, the data for ܫ௔ is found to be well represented 

by the lognormal distribution (ln(ܫ௔) is normally distributed). But other model parameters show 

distinct differentiation from the lognormal distribution. In particular, a Beta distribution with 

specified boundaries is assigned to the parameters ܦହିଽହ, ݐ௠௜ௗ, and ߞ௙, while the frequency 

parameter ߱௠௜ௗ/2ߨ is well represented by a gamma distribution. For ߱ᇱ/2ߨ, the fitted 

distribution is a two-sided truncated exponential with the PDF: 

 ݂ఠᇲ/ଶగ(߱ᇱ/2ߨ) = ൝ 4.85 exp(6.77 ߱ᇱ/2ߨ) − 2 ൏ ߱ᇱ/2ߨ ൏ 04.85 exp(−17.10 ߱ᇱ/2ߨ) 0 ൏ ߱ᇱ/2ߨ ൏ 0.5   0 otherwise  (4.13)

Rounded bounds for the corresponding distributions are provided in Table 4.4. These bounds are 

assigned to reflect the physical limitations of a model parameter (e.g., frequency cannot be 

negative or damping ratio cannot be greater than 1) as well as the limits of the observed data. 

The K-S test, a widely used goodness-of-fit test that compares the empirical CDF with 

the CDF of an assumed theoretical distribution, is performed for each model parameter and its 

assigned distribution. At the significance level of 0.05, the null hypothesis that the observed data 
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for a model parameter follow the assigned distribution was rejected for ܫ ҧ௔, ܦହିଽହ, and ߱Ԣ. At the 

significance level of 0.01, the null hypothesis was only rejected for ܫ ҧ௔, and ߱Ԣ. Figure 4.7 shows 

the fit of the CDFs for the assigned distributions to the empirical CDFs of the computed samples 

of model parameters. It is observed that the fit is good for all the model parameters, which 

suggests the appropriateness of the assigned distributions for our purposes regardless of the 

results from the K-S test. 

4.5.2 Transformation to the Standard Normal Space 

Using the assigned marginal distributions, the identified model parameters for the database are 

transformed to the standard normal space according to (4.1). Figure 4.8 shows quantile plots of 

the data for each parameter, after transformation according to (4.1), versus the corresponding 

normal quantiles. It is observed that in most cases the data within the first and third quartiles 

(marked by hollow circles) closely follow a straight line, thus confirming that the transformed 

data follow the normal distribution reasonably well. The worst fit belongs to the Arias intensity, 

for which the commonly assumed lognormal distribution was adopted. We conclude that the 

selected distributions provide an effective means for transforming the data to the normal space. 

This process helps us satisfy the normality assumption underlying the regression analysis that is 

used to develop empirical predictive equations for the model parameters, as described in the next 

section.  

4.6 EMPIRICAL PREDICTIVE EQUATIONS FOR THE MODEL PARAMETERS 

In this section we construct empirical predictive equations for each of the model parameters in 

terms of the earthquake and site characteristic variables ܨ, ,ܯ ܴ௥௨௣, and ௌܸଷ଴ through regression 

analysis of the computed data set of fitted parameter values. The correlations between the 

predicted model parameters are also estimated. For simplicity of the notation, hereafter ܴ௥௨௣ and 

ௌܸଷ଴ are denoted as ܴ and ܸ. 
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4.6.1 Regression Analysis 

As seen in Table 4.1, the database contains different numbers of records from different 

earthquakes. The records associated with each earthquake correspond to different source-to-site 

distances, soil types, or orientations (two orthogonal horizontal components are available for 

each recording station). While there are 48 records from the Chi-Chi earthquake, several 

earthquakes contribute only 2 records. This uneven clustering of data must be accounted for in 

the regression analysis, so that the results are not overly influenced by an individual earthquake 

with many records. Furthermore, each earthquake is expected to have its own particular effect on 

its resulting ground motions. This effect is random and varies from earthquake to earthquake. 

Therefore, the data corresponding to ground motions from the same earthquake have a common 

factor and are correlated, while the data corresponding to different earthquakes are statistically 

independent observations. To address these issues, a random-effects regression analysis method 

is employed. This method effectively handles the problem of weighing observations and, unlike 

ordinary regression analysis, assumes that data within earthquake clusters are statistically 

dependent. We employ the random-effects regression model in the form:   

௜,௝௞ݒ  = ,௝ܨ௜൫ߤ ,௝ܯ ௝ܴ௞, ௞ܸ, ઺௜൯ + ௜,௝ߟ̂ + ߳௜̂,௝௞ (4.14)

where ݅ = 1, … ,6 indexes the model parameters, ݆ = 1, … ,19 indexes the earthquakes, and ݇ = 1, … , ௝݊ 
indexes the records associated with the ݆௧௛ earthquake with ௝݊ denoting the number 

of records from that earthquake. The transformed model parameter, ݒ௜,௝௞, is chosen as the 

response parameter of the regression. ߤ௜ and ઺௜ are as defined in (4.2). The former is more 

precisely denoted as ߤ௩೔|ி,ெ,ோ,௏, the predictive (conditional mean) value of ݒ௜ for given ܯ ,ܨ, ܴ, 

and ܸ. Having random effects necessitates a more careful definition of the residuals. Therefore, 

the total residual, defined as the difference between the observed and predicted values of the 

response variable, is represented as the sum of ̂ߟ௜,௝ and ߳௜̂,௝௞, referred to, respectively, as the 

inter-event (random effect for the ݆௧௛ earthquake) and intra-event (the random effect for the the ݇௧௛ record of  ݆௧௛ earthquake) residuals. The superposed hats indicate that these residuals are 

observed values of independent, zero-mean, normally distributed error terms ߟ௜ and ߳௜ with 

variances ߬௜ଶ and ߪ௜ଶ, respectively. With this arrangement, the total error for the ݅௧௛ model 

parameter is a zero-mean normally distributed random variable with variance ߬௜ଶ +   .௜ଶߪ
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One may argue that since the two horizontal components of each record are correlated, an 

additional random effect term needs to be included in (4.14). This is not necessary because the 

two components are included for all the records of the database. In effect, the dependence 

between the pairs of components at each site is accounted for through the random effect term for 

all recordings of the same earthquake. Therefore, the resulting parameter estimates are unbiased. 

Eventually, the resulting sample correlations between the data corresponding to the two 

horizontal components of ground motion at each site provide a means for simulating pairs of 

ground motion components at a site of interest, as described in Chapter 7. 

For each model parameter, a predictive equation of the form in (4.14) is constructed by 

selecting an appropriate functional form for ߤ௜ and estimating the regression coefficients, ઺௜, and 

variance components, ߬௜ଶ and ߪ௜ଶ. The validity of these predictive equations are then examined by 

standard statistical methods including inspection of residual diagnostic plots, investigation of 

estimated variance components for alternative functional forms, and performing standard 

significance tests on the regression as well as on the regression parameters. 

4.6.1.1 Estimation of the Regression Coefficients and Variance Components 

Random-effects modeling is sometimes referred to as variance-components modeling because 

for a given database, in addition to estimating the regression coefficients ઺௜, one needs to 

individually estimate the error variances ߬௜ଶ and ߪ௜ଶ. In this study we employ the maximum 

likelihood technique to obtain estimates of all the regression coefficients and variances at one 

step. Although this method requires the use of a numerical optimization technique, it is not 

computationally intensive and, unlike other proposed methods (e.g., Abrahamson and Youngs 

[1992]; Brillinger and Preisler [1985]), does not require a complicated algorithm that calculates 

the regression coefficients and the variance components in separate, iterative steps. The 

likelihood function is formulated by noting that the observed values of the total residuals are 

jointly normal with a zero mean vector and a block-diagonal covariance matrix. Therefore, for 

the ݅௧௛ model parameter, the likelihood function of the regression coefficients and variance 

components is equal to the joint normal PDF evaluated for the observed values of the total 

residuals. Writing the total residuals as ݒ௜,௝௞ − ,௝ܨ௜൫ߤ ,௝ܯ ௝ܴ௞, ௞ܸ, ઺௜൯ and collecting the values for 

all ݆ and ݇ into vectors ܞ௜ and ૄ௜(઺௜), the likelihood function assumes the form: 
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,઺௜)ܮ  ߬௜ଶ, (௜ଶߪ = 1|઱௜|ଵ/ଶ exp ൬− 12 ௜ܞ] − ૄ௜(઺௜)]T઱௜ି ଵ[ܞ௜ − ૄ௜(઺௜)]൰ (4.15)

where ઱௜ is the covariance matrix, which is expressed as a function of the variance components ߬௜ଶ and ߪ௜ଶ in the form: 

 ઱௜(߬௜ଶ, (௜ଶߪ = ێێێۏ
௜ଶ۷௡భߪۍ + ߬௜ଶ૚௡భ ૙૙ ௜ଶ۷௡మߪ + ߬௜ଶ૚௡మ ڮ ૙ ڮ              ૙ ૙                         ૙ڭ                         ڭ              ڰ ڮڭ ௜ଶ۷௡భవߪ + ߬௜ଶ૚௡భవ ۑۑۑے

ې
 ேൈே

 

                        = ௜ଶ۷ேߪ + ߬௜ଶ ቆ෍ ૚௡ೕା௝ୀଵ,…,ଵଽ ቇ  

(4.16)

In the above, ۷௡ is the identity matrix of size ݊, ૚௡ is an ݊ ൈ ݊ matrix of 1’s, and ܰ is the total 

number of observations (206 in the present case). ૙ denotes a matrix of zero values. The first 

equality shows the overall appearance of the covariance matrix, while the second equally 

represents the more commonly used form of this matrix (e.g., Searle 1971). This compact form 

facilitates computer programming when maximizing the likelihood in (4.15). In this expression, Σା indicates a direct sum2 operation. The above formulation takes into consideration the fact that 

data corresponding to records from different earthquakes are uncorrelated (off-diagonal blocks 

are zero), data corresponding to the records from the same earthquake have correlation ߬௜ଶ/(߬௜ଶ  ௜ଶ) (off-diagonal elements of the diagonal blocks), and each data point is fully correlated withߪ+

itself (diagonal elements equal ߬௜ଶ + ,௜ଶ). The maximum likelihood estimates of the parameters ઺௜ߪ  ߬௜ଶ, and ߪ௜ଶ for each transformed stochastic model parameter ݒ௜ are obtained by maximizing 

the function in (4.15) relative to these parameters. In this study, the MATLAB optimization 

toolbox is used for this purpose.  

4.6.1.2 Model Testing: Computing Residuals 

To assess the sufficiency of the selected functional forms for each predictive equation, one 

widely used approach is to inspect the residuals. The residuals are inspected to examine 

                                                 

2 The direct sum of matrices of different sizes ࡭௜, ݅ = 1, … , ݊, is Σ௜ୀଵ,…௡ା ௜ۯ = ൦ ଵۯ    ૙  …૙ ଶۯ   ڭ… ڭ ૙   ڰ     ૙   … 
૙૙ۯ ڭ௡൪. 
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departures from normality. This is done by inspecting their histograms and Q-Q plots (Q stands 

for quantile). Furthermore, the plots of the residuals versus predictor variables (sometimes 

referred to as the residual diagnostic plots) are constructed and examined for any systematic 

patterns. This process, which is commonly known as analysis of residuals, requires calculation of 

the residuals which involves partitioning of the total residuals into inter-event and intra-event 

residuals. The inter-event residuals for each group (data corresponding to the records of a single 

earthquake) are estimated as 

௜,௝ߟ̂  = ۈۉ
ۇ ߬௜ଶ߬௜ଶ + ௜ଶ௝݊ߪ ۋی

ۊ ൈ ቌ∑ ቀݒ௜,௝௞ − ௩೔,ೕೖ|ிೕ,ெೕ,ோೕೖ,௏ೖቁ௡ೕ௞ୀଵߤ ௝݊ ቍ 

 

= ߬௜ଶ ∑ ௜,௝௞ߥ) − ఔ೔,ೕೖ|ிೕ,ெೕ,ோೕೖ,௏ೖ)௡ೕ௞ୀଵߤ ௝݊߬௜ଶ + ௜ଶߪ  

(4.17)

where a shrinkage factor, reflecting the relative size of the variation in a group to the total 

variation in the database, is multiplied with the raw residual (i.e., average of the total residuals in 

a group) for that group. Observe that the shrinkage factor involves ௝݊,
 
the number of records 

from earthquake ݆, and thereby adjusts for the sparseness of information from an earthquake with 

a small number of records. The second equality is the form that is commonly used in the 

literature for construction of ground motion predictive equations based on one of the earliest 

studies on this subject by Abrahamson and Youngs (1992). After calculating the inter-event 

residuals, the intra-event residuals are computed from 

 ߳௜̂,௝௞ = ቀݒ௜,௝௞ − ௩೔,ೕೖ|ிೕ,ெೕ,ோೕೖ,௏ೖቁߤ − ௜,௝ (4.18)ߟ̂

where the expression in the parenthesis is the total residual. 

4.6.1.3 Regression Results 

For the sake of simplicity, and considering the relatively narrow range of earthquake magnitudes, 

a linear form of the regression equation for each transformed model parameter in terms of 

explanatory functions representing the type of faulting, earthquake magnitude, source-to-site 

distance and soil effect is employed. Various linear and nonlinear forms of the explanatory 
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functions were examined. In view of the availability of previous predictive formulas for Arias 

intensity and duration (e.g., Travasarou et al. [2003]; Abrahamson and Silva [1996]), more 

possible forms of the explanatory functions for these two parameters were investigated. For the 

other model parameters, alternative forms were considered only if the linear form revealed 

inadequate behavior of the residuals. For each model parameter, the relative performances of the 

resulting functional forms were assessed by inspecting the residuals and estimates of the variance 

components. Functional forms with smaller variances that demonstrated adequate behavior of the 

residuals (i.e., lack of systematic patterns in the plots of residuals versus the predictor variables) 

were selected. The resulting predictive equations are given by  ݒଵ = ଵ,଴ߚ + (ܨ)ଵ,ଵߚ + ଵ,ଶߚ ൬ 7.0൰ܯ + ଵ,ଷߚ ൬ln ܴ25 km൰ + ଵ,ସߚ ൬ln ܸ750 m/s൰ + ଵߟ + ߳ଵ             (4.19)

௜ݒ = ௜,଴ߚ + (ܨ)௜,ଵߚ + ௜,ଶߚ ൬ 7.0൰ܯ + ௜,ଷߚ ൬ ܴ25 km൰ + ௜,ସߚ ൬ ܸ750 m/s൰ + ௜ߟ + ߳௜     ݅ = 2, … 6 (4.20)

with the estimated regression parameters and standard deviations listed in Table 4.5. Standard 

significance tests verified the adequacy of the regression for each model parameter at the 90% 

and higher confidence levels (P-value for the F-test with the null hypothesis ߚ௜,ଵ = ௜,ଶߚ = ௜,ଷߚ ௜,ସߚ= = 0 is reported in Table 4.5). Furthermore, the regression coefficients ߚ௜,ଵ, ,௜,ଶߚ  ௜,ସߚ ௜,ଷ, andߚ

(݅ = 1, … ,6) were individually tested (ߚ௜,଴ was skipped because inclusion of a constant term in 

the regression formulation was not questioned); those with statistical significance at the 95% 

confidence level are shown in bold in Table 4.5. Furthermore, 95% confidence intervals for these 

regression coefficients are reported in Table 4.6. Inclusion of zero in a confidence interval 

indicates that the corresponding regression coefficient is not of much significance; this is 

consistent with the reported results in Table 4.5. Table 4.7 presents the P-values for the t-test 

with the null hypothesis ߚ௜,௝ = 0 (݆ = 1, … ,4). The smaller this number is, the more significant 

the estimate of the corresponding coefficient in Table 4.5 is. In the subsequent analysis (Chapter 

5), all the coefficients in Table 4.5 are used (regardless of the significance level) to randomly 

generate the model parameters and simulate ground motions. 

The first three terms in (4.19) and (4.20) reflect the effect of the source that generates the 

seismic waves. For strike-slip type of faulting, ܨ = 0, this effect is controlled by ߚ௜,଴ and ߚ௜,ଶ; 

while for reverse type of faulting, ܨ = 1, it is controlled by ߚ௜,଴, ߚ௜,ଵ, and ߚ௜,ଶ. The fourth term 

reflects the effect of the travel path on waves (including geometric spreading and other 
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attenuating factors). The fifth term reflects the effect of the site conditions on the waves. The last 

two terms, random errors, represent the natural variability of the response parameters for the 

specified set of earthquake and site characteristics. The moment magnitude, source-to-site 

distance, and shear-wave velocity terms in the predictive Equations (4.19) and (4.20) have each 

been normalized by a typical value for engineering purposes. This normalization renders the 

regression coefficients dimensionless. Therefore, by simply comparing the estimated regression 

coefficients one can gain insight into the relative contribution of the earthquake and site 

characteristics to a model parameter.  

The estimated parameters in Table 4.5 provide some interesting insight. For example, we 

observe that, as expected, Arias intensity tends to increase with magnitude and decrease with 

distance and site stiffness. The effective duration as well as ݐ௠௜ௗ tend to increase with magnitude 

and distance (more distant sites tend to experience longer motions) and tend to decrease with site 

stiffness. These findings are consistent with prior observations (Travasarou et al. [2003]); 

Abrahamson and Silva [1996]; Trifunac and Brady [1975]). The results also suggest that the 

effective duration and ݐ௠௜ௗ tend to be shorter for reverse faulting compared to strike-slip 

faulting. Furthermore, the results indicate that the predominant frequency at the middle of strong 

shaking tends to decrease with increasing magnitude and source-to-site distance, while the rate of 

change of the predominant frequency (which has a negative mean) tends to increase, i.e., a 

slower change with increasing magnitude and distance. Finally, the filter damping, which is a 

measure of the bandwidth of the ground motion, tends to increase with the moment magnitude 

and site stiffness and decrease with source-to-site distance. These trends are in general consistent 

with our expectations.  

Figure 4.9 shows quantile plots of the residuals for each model parameter versus the 

corresponding normal quantiles (zero-mean with the estimated variance). It is observed that the 

data within the first and third quartiles (marked by hollow circles) closely follow a straight line, 

thus confirming that the residuals follow the normal distribution. Figure 4.10 shows the 

diagnostic scatter plots of the residuals versus the predictor variables. These plots show that the 

residuals are evenly scattered above and below the zero level with no obvious systematic trends. 

This implies lack of bias and a good fit of the regression models to the data. 

As a further item of interest, Table 4.8 compares the estimated total variances obtained by 

the method described above with those obtained from a standard regression analysis according to 
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(4.2) that disregards the random effects in the data. As can be seen, the estimated variances tend 

to be larger with the random-effects regression. This is not surprising because by neglecting 

intra-event correlations, the standard regression assumes more information is available in the 

data than really is. By correctly accounting for the dependence between groups of observations, 

the random-effects regression method avoids underestimating the total error variance.  

4.6.2 Correlation Analysis 

For a given set of earthquake and site characteristics (ܨ, ,ܯ ܴ, ܸ), the parameters ݒ௜, ݅ = 1, … ,6, 

and, therefore, ߠ௜ are correlated. These are estimated as the correlations between the total 

residuals ̂ߟ௜ + ߳௜̂. Table 4.9 lists the correlation coefficients between the jointly normal variables ݒ௜. Several of these estimated correlations provide interesting insight. Observe the negative 

correlation between ݒଵ and ݒଶ (corresponding to ܫ௔ and ܦହିଽହ). This is somewhat surprising, 

since one would expect a higher Arias intensity for a longer duration. However, since Arias 

intensity is more strongly related to the amplitude of the motion than to the duration (it is related 

to the square of the amplitude but linear in duration), this result may be due to the tendency of 

motions with high amplitude to have shorter durations. This negative correlation has also been 

observed by Trifunac and Brady (1975). Second, a strong positive correlation is observed 

between ݒଶ and ݒଷ (corresponding to ܦହିଽହ and ݐ௠௜ௗ), which is as expected. Interestingly, ݒସ 

(corresponding to ߱௠௜ௗ) has negative correlations (though small) with all three previous 

parameters. Thus, higher intensity and longer duration motions tend to have lower predominant 

frequency. The correlation between ݒସ and ݒହ (corresponding to ߱௠௜ௗ and ߱Ԣ) is negative, 

indicating that motions with higher predominant frequency tend to have a faster decay of the 

frequency with time. Finally, the positive correlation between ݒସ and ݒ଺ (corresponding to ߱௠௜ௗ 

and ߞ௙) suggests that high-frequency motions tend to have broader bandwidth. 

4.7 SUMMARY 

For the proposed stochastic ground motion model to be of practical use in earthquake 

engineering, empirical predictive equations are constructed for the model parameters in terms of 

earthquake and site characteristics. A general methodology for construction of empirical 
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predictive equations is presented which is demonstrated for a selected database of recorded 

ground motions. The database used in this study is a subset of the NGA database and is limited 

to strong motions on stiff soil with source-to-site distance greater than 10 km. Model parameters 

are identified for each accelerogram in the database by fitting the evolutionary statistical 

characteristics of the stochastic model to those of the recorded motion. For convenience in 

obtaining observational data, alternative model parameters are proposed and adjustments are 

made to the methods of parameter identification previously proposed in Chapter 3. By 

performing statistical analysis on the identified model parameters, marginal distributions are 

assigned to each parameter. Using these distributions the data are transformed to the standard 

normal space, where they are regressed on the earthquake and site characteristics resulting in 

predictive Equations (4.19) and (4.20) and corresponding parameter estimates shown in Table 

4.5. The specifics of regression analysis are described in detail and the resulting regression 

models are tested. Correlation analysis is then performed to find dependencies among the model 

parameters. The results are presented in Table 4.9. The equations in (4.19) and (4.20), and the 

information provided in Tables 4.5 and 4.9 facilitate probabilistic prediction of the model 

parameters (ܫ ҧ௔, ,ହିଽହܦ ,௠௜ௗݐ ߱௠௜ௗ, ߱ᇱ, ,ܨ) ௙) if the earthquake and site characteristicsߞ ,ܯ ܴ, ܸ) 

are specified without any need for a previously recorded ground motion. 
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Table 4.1 Selected earthquakes from the Campbell-Bozorgnia NGA database, type of 
faulting, magnitude, and number of records. 

Earthquake 
Number 

Earthquake ID 
in NGA Database3 

Earthquake 
Name 

Faulting 
Mechanism 

Moment 
Magnitude 

Number of 
Records 

1 0050 Imperial Valley-06 Strike-Slip 6.53 2 
2 0064 Victoria, Mexico Strike-Slip 6.33 2 
3 0090 Morgan Hill Strike-Slip 6.19 10 
4 0125 Landers Strike-Slip 7.28 4 
5 0126 Big Bear-01 Strike-Slip 6.46 10 
6 0129 Kobe, Japan Strike-Slip 6.90 4 
7 0136 Kocaeli, Turkey Strike-Slip 7.51 4 
8 0138 Duzce, Turkey Strike-Slip 7.14 2 
9 0140 Sitka, Alaska Strike-Slip 7.68 2 

10 0144 Manjil, Iran Strike-Slip 7.37 2 
11 0158 Hector Mine Strike-Slip 7.13 16 
12 0169 Denali, Alaska Strike-Slip 7.90 4 
13 0030 San Fernando Reverse 6.61 14 
14 0046 Tabas, Iran Reverse 7.35 2 
15 0076 Coalinga-01 Reverse 6.36 2 
16 0101 N. Palm Springs Reverse 6.06 12 
17 0118 Loma Prieta Reverse 6.93 28 
18 0127 Northridge-01 Reverse 6.69 38 
19 0137 Chi-Chi, Taiwan Reverse 7.62 48 

 

Table 4.2 Selected ground motion records, source-to-site distances, and shear-wave 
velocities of recording sites. 

Earthquake 
Number 

Record ID 
in NGA 

Database4 
Station Name 

Closest Distance 
to The Ruptured 

Area 
(km)

Shear-wave 
Velocity of Top 30 

meters 
(m/s)

1 164 Cerro Prieto 15.19 659.6
2 265 Cerro Prieto 14.37 659.6
3 454 Gilroy – Gavilan Coll. 14.84 729.6
3 455 Gilroy Array #1 14.91 1428
3 471 San Justo Dam (L Abut) 31.88 622.86
3 472 San Justo Dam (R Abut) 31.88 622.86
3 476 UCSC Lick Observatory 45.47 714
4 891 Silent Valley – Poppet Flat 50.85 684.94
4 897 Twentynine Palms 41.43 684.94

 
 

                                                 
3 A unique number assigned to each earthquake in the NGA database for identification purposes. 
4 A unique number assigned to each record in the NGA database for identification purposes. 
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Table 4.2—Continued. 

Earthquake 
Number 

Record ID 
in NGA 

Database5 
Station Name 

Closest Distance 
to The Ruptured 

Area 
(km)

Shear-wave 
Velocity of Top 30 

meters 
(m/s)

5 922 Pear Blossom – Pallet Creek 99.5 684.94
5 925 Rancho Cucamonga – Deer Can 66 821.69
5 928 Sage – Fire Station 61.8 622.86
5 934 Silent Valley – Poppet Flat 31.5 684.94
5 938 Winchester Bergman Ran 58.8 684.94
6 1109 MZH 70.26 609
6 1112 OKA 86.94 609
7 1154 Bursa Sivil 65.53 659.6
7 1169 Maslak 55.3 659.6
8 1619 Mudurnu 34.3 659.6
9 1626 Sitka Observatory 34.61 659.6
10 1633 Abbar 12.56 723.95
11 1763 Anza – Pinyon Flat 89.98 724.89
11 1767 Banning – Twin Pines Road 83.43 684.94
11 1786 Heart Bar State Park 61.21 684.94
11 1787 Hector 11.66 684.94
11 1795 Joshua Tree N.M. – Keys View 50.42 684.94
11 1824 San Bernardino – Del Rosa Wk Sta 96.91 684.94
11 1832 Seven Oaks Dam Project Office 87.2 659.6
11 1836 Twentynine Palms 42.06 684.94
12 2107 Carlo (temp) 50.94 963.94
12 2111 R109 (temp) 43 963.94
13 59 Cedar Springs, Allen Ranch 89.72 813.48
13 63 Fairmont Dam 30.19 684.94
13 71 Lake Hughes #12 19.3 602.1
13 72 Lake Hughes #4 25.07 821.69
13 73 Lake Hughes #9 22.57 670.84
13 87 Santa Anita Dam 30.7 684.94
13 89 Tehachapi Pump 63.79 669.48
14 139 Dayhook 13.94 659.6
15 369 Slack Canyon 27.46 684.94
16 511 Anza – Red Mountain 38.43 684.94
16 512 Anza - Tule Canyon 52.06 684.94
16 528 Murrieta Hot Springs 54.82 684.94
16 536 Santa Rosa Mountain 39.14 684.94
16 537 Silent Valley – Poppet Flat 17.03 684.94
16 541 Winchester Bergman Ran 49.08 684.94
17 769 Gilroy Array #6 18.33 663.31 
17 771 Golden Gate Bridge 79.81 641.56 

 

                                                 
5 A unique number assigned to each record in the NGA database for identification purposes. 
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Table 4.2—Continued. 

Earthquake 
Number 

Record ID 
in NGA 

Database6 
Station Name 

Closest Distance 
to The Ruptured 

Area 
(km)

Shear-wave 
Velocity of Top 30 

meters 
(m/s)

17 781 Lower Crystal Springs Dam dwnst 48.39 712.82
17 782 Monterey City Hall 44.35 684.94
17 788 Piedmont Jr High 73 895.36
17 789 Point Bonita 83.45 1315.9
17 791 SAGO South – Surface 34.32 684.94
17 795 SF – Pacific Heights 76.05 1249.9
17 797 SF – Rincon Hill 74.14 873.1
17 801 San Jose – Santa Teresa Hills 14.69 671.77
17 804 So. San Francisco, Sierra Pt. 63.15 1020.6
17 809 UCSC 18.51 714
17 810 UCSC Lick Observatory 18.41 714
17 813 Yerba Buena Island 75.17 659.81
18 943 Anacapa Island 68.93 821.69
18 946 Antelope Buttes 46.91 821.69
18 957 Burbank – Howard Rd. 16.88 821.69
18 989 LA – Chalon Rd 20.45 740.05
18 994 LA – Griffith Park Observatory 23.77 1015.9
18 1011 LA – Wonderland Ave 20.3 1222.5
18 1012 LA 00 19.07 706.22
18 1020 Lake Hughes #12A 21.36 602.1
18 1021 Lake Hughes #4 – Camp Mend 31.66 821.69
18 1023 Lake Hughes #9 25.36 670.84
18 1027 Leona Valley #1 37.19 684.94
18 1029 Leona Valley #3 37.33 684.94
18 1033 Littlerock – Brainard Can 46.58 821.69
18 1041 Mt Wilson – CIT Seis Sta 35.88 821.69
18 1060 Rancho Cucamonga – Deer Can 79.99 821.69
18 1074 Sandberg – Bald Mtn 41.56 821.69
18 1078 Santa Susana Ground 16.74 715.12
18 1091 Vasquez Rocks Park 23.64 996.43
18 1096 Wrightwood – Jackson Flat 64.66 821.69
19 1206 CHY042 28.17 680
19 1234 CHY086 28.42 679.98
19 1245 CHY102 37.72 679.89
19 1257 HWA003 56.14 1525.9
19 1273 HWA024 43.15 630.08
19 1278 HWA029 54.29 614.05
19 1287 HWA038 42.54 642.73
19 1293 HWA046 51.8 617.52

 

                                                 
6 A unique number assigned to each record in the NGA database for identification purposes. 
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Table 4.2—Continued. 

Earthquake 
Number 

Record ID 
in NGA 

Database7 
Station Name 

Closest Distance 
to The Ruptured 

Area 
(km)

Shear-wave 
Velocity of Top 30 

meters 
(m/s)

19 1302 HWA057 50.6 678.6
19 1325 ILA031 83.31 649.25
19 1347 ILA063 61.06 996.51
19 1350 ILA067 38.82 680
19 1377 KAU050 40.49 679.97
19 1391 KAU077 82.96 680
19 1485 TCU045 26 704.64
19 1517 TCU084 11.24 680
19 1518 TCU085 58.09 999.66
19 1520 TCU088 18.16 680
19 1548 TCU128 13.15 599.64
19 1576 TTN024 60.01 645.49
19 1577 TTN025 65.79 704.96
19 1585 TTN040 48.33 728.01
19 1587 TTN042 65.25 845.34
19 1594 TTN051 36.7 680

 

Table 4.3  Summary statistical data of identified model parameters 

Parameter Minimum Maximum Sample Mean 
Sample Standard 

Deviation 
Coefficient of 

Variation ܫ௔ (s.g.) 0.000275 2.07 0.0468 0.164 ହିଽହ (s) 5.37 41.29ܦ3.49 17.25 9.31 ௠௜ௗ (s) 0.93 35.15ݐ0.54 12.38 7.44 0.60߱௠௜ௗ/2ߨ (Hz) 1.31 21.6 5.87 3.11 0.53߱ᇱ/2ߨ (Hz/s) −1.502 0.406 −0.089 0.185 ௙ (Ratio) 0.027 0.767ߞ2.07 0.213 0.143 0.67
 

 

 

 

                                                 
7 A unique number assigned to each record in the NGA database for identification purposes. 
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Table 4.4  Distribution models and bounds assigned to the model parameters. 

Parameter Fitted Distribution8 
Distribution 

Bounds ܫ ҧ௔ (s.g.) Lognormal (0, ,Gamma (0 (Hz) ߨ௠௜ௗ (s) Beta [0.5,40] ߱௠௜ௗ/2ݐ ହିଽହ (s) Beta [5,45]ܦ (∞ ∞) ߱ᇱ/2ߨ  (Hz) Two-sided Truncated Exponential [−2,0.5] ߞ௙ (Ratio) Beta [0.02,1] 
 

Table 4.5 Maximum likelihood estimates of regression coefficients and standard error 
components. ݅ ߚ௜,଴ ߚ௜,ଵ ߚ௜,ଶ ߚ௜,ଷ ߚ௜,ସ ߬௜ ߪ௜ P-value9 1 − 1.844 − 0.071 2.944 − 1.356 − 0.265 0.274 0.594 0.0002 − 6.195 − 0.703 6.792 0.219 − 0.523 0.457 0.569 0.0003 − 5.011 − 0.345 4.638 0.348 − 0.185 0.511 0.414 0.0004 2.253 − 0.081 − 1.810 − 0.211 0.012 0.692 0.723 0.0015 − 2.489 0.044 2.408 0.065 − 0.081 0.129 0.953 0.0956 − 0.258 − 0.477 0.905 − 0.289 0.316 0.682 0.760 0.002

 

Table 4.6  95% confidence intervals for the regression coefficients. 

 Confidence Intervals ݅  ߚ௜,ଵ  ߚ௜,ଶ  ߚ௜,ଷ  ߚ௜,ସ  1 [−0.266 , 0.124] [1.715 , 4.173] [−1.512 , −1.200] [−0.749 , 0.218]2 [−0.929 , − 0.478] [5.383 , 8.204] [0.106 , 0.331] [−0.980 , −0.065]3 [−0.592 , −0.098] [3.094 , 6.181] [0.225 , 0.471] [−0.685 , 0.316]4 [−0.377 , 0.215] [−3.668 , 0.049] [−0.359 , −0.063] [−0.589 , 0.613]5 [−0.255 , 0.343] [0.532, 4.284] [−0.084 , 0.215] [−0.688 , 0.526]6 [−0.774 , −0.180] [−0.959 , 2.765] [−0.437 , −0.140] [−0.287 , 0.919]
 

 

                                                 
8 Means and standard deviations of these distributions are according to columns 4 and 5 of Table 4.3. 
9 The smallest significance level at which the null hypothesis ߚ௜,ଵ = ௜,ଶߚ = ௜,ଷߚ = ௜,ସߚ = 0 is rejected. F-test is 

employed. 
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Table 4.7  P-values for the t-test with the null hypothesis, ࢐,࢏ࢼ = ૙.  

 P-value10 ݅  ߚ௜,ଵ ߚ௜,ଶ ߚ௜,ଷ ߚ௜,ସ 1 0.476 0.000 0.000 0.2812 0.000 0.000 0.000 0.0253 0.006 0.000 0.000 0.4674 0.591 0.056 0.005 0.9685 0.772 0.012 0.391 0.7926 0.002 0.339 0.000 0.303
 

Table 4.8  Total standard deviations obtained by two different regression methods. 

݅ Regular 
Regression 

Random-Effects 
Regression 1 0.647 0.6542 0.681 0.7303 0.655 0.6584 0.908 1.0005 0.826 0.9626 0.959 1.021

 

Table 4.9 Sample correlation coefficients between the transformed model parameters 
(estimated as the correlation coefficients between the total error terms). 

ଶ −0.36 1ݒ  ଵ 1ݒ ଺ݒ ହݒ ସݒ ଷݒ ଶݒ ଵݒ  Sym. ଷ    0.01 0.67ݒ  1 ସ −0.15 −0.13ݒ  −0.28 1 ହ    0.13 −0.16ݒ  −0.20 −0.20 1 ଺ −0.01 −0.20ݒ  −0.22 0.28 −0.01 1
 

 

 

 

 

 

                                                 
10 The smaller this number is, the more significant the estimate of the corresponding coefficient in Table 4.5 is.   
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Fig. 4.1 Top: recorded motion. Left: simulated motions with model parameters identical to those of the recorded motion. Right: 
simulated motions with different sets of model parameters that correspond to the characteristics of the earthquake and 
site that produced the recorded motion. 
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Fig. 4.2  Modulating function parameters identified for an acceleration time-history. 
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Fig. 4.3 Examples of recorded acceleration time-histories with long stretches at the 
beginning (ࢀ૙ ് ૙). (a) Component 000 of 1995 Kobe, Japan, earthquake 
recorded at OKA station. (b) Component 090 of 2002 Denali, Alaska, earthquake 
recorded at Carlo station. (c) Component 270 of 1989 Loma Prieta earthquake 
recorded at SF–Pacific Heights station. (d) Component E of 1999 Chi-Chi, 
Taiwan, earthquake recorded at HWA029 station. 
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Fig. 4.4 Identification of filter parameters. (a) Matching the cumulative number of zero-
level up-crossings results in ࣓ࢊ࢏࢓ ૛࣊ = ૟. ૢ૛⁄  Hz and ࣓Ԣ ૛࣊ = −૙. ૚૝⁄  Hz/s. (b) 
Matching the cumulative count of negative maxima and positive minima gives ࢌࣀ = ૙. ૝૙. 
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Fig. 4.5 Distribution of moment magnitude and source-to-site distance in the considered 
database. 
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Fig. 4.6 Normalized frequency diagrams of the identified model parameters for the entire data set (combined strike-slip and 
reverse faulting mechanisms). Fitted probability density functions (PDFs) are superimposed and their parameter values 
and distribution types are listed in Tables 4.3 and 4.4. 
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Fig. 4.7 Empirical cumulative distribution functions (CDFs) of the identified model parameters for the entire data set (combined 
strike-slip and reverse faulting mechanisms). CDFs of the fitted distributions are superimposed. 
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Fig. 4.8  Q-Q plots of transformed data for each model parameter. Hollow circles indicate the first and third quartiles. 
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(a) 

  

(b) 

Fig. 4.9 Q-Q plots of the (a) inter-event residuals (b) intra-event residuals. Hollow circles 
indicate the first and third quartiles. 
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Fig. 4.10 Scatter plots of residuals against earthquake magnitude, source-to-site distance, 
and shear-wave velocity for each transformed model parameter. 
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5 Simulation of Ground Motions for Specified 
Earthquake and Site Characteristics and 
Their Use in PBEE 

5.1 INTRODUCTION 

In seismic design and analysis of structures, development of ground motions is a crucial step 

because even with the most sophisticated and accurate methods of structural analysis, the validity 

of predicted structural responses depends on the validity of the input excitations. Several levels of 

ground motions are commonly considered for seismic assessment of a structure. 

For lower levels of intensity, when the structure is expected to remain elastic, response-

spectrum analysis is usually sufficient. This type of analysis requires knowledge only of the ground 

motion spectral values. One of the most practical approaches to obtain these values is to use 

empirically based ground motion prediction equations (GMPEs), also known as attenuation 

relations. Many GMPEs have been developed that predict the median and standard deviation of 

ground motion spectral values for a range of spectral periods. The most recent of them is the Next 

Generation Attenuation (NGA) relations (Abrahamson et al. 2008). These GMPEs have been 

calibrated against observed data and are commonly used in practice.  

For higher levels of intensity, when nonlinear structural behavior is likely, response-history 

dynamic analysis is necessary. This type of analysis requires knowledge of acceleration time-

histories. It is common practice to use real recorded ground motions for this purpose. However, 

difficulties in this approach arise because ground motion properties vary for different earthquake 

and site characteristics, and recorded motions are not available for all types of earthquakes in all 

regions. As a result, the engineer is often forced to select motions recorded on sites other than the 

site of interest and to modify the records (e.g., scale them or modify their frequency contents) in 

ways that are often questionable and may render motions that are not realistic. Another alternative 

is to use synthetic motions. A suite of synthetic motions for specified earthquake and site 
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characteristics can be used in conjunction with or in place of previously recorded ground motions 

in performance-based earthquake engineering (PBEE). PBEE considers the entire spectrum of 

structural response, from linear to grossly nonlinear and even collapse, and thereby requires ground 

motions with various levels of intensity for different earthquake scenarios. Such a collection is 

scarce among previously recorded motions. Therefore, generation of an appropriate suite of 

synthetic motions that have characteristics similar to those of real earthquake ground motions is 

especially valuable in PBEE. 

Many models have been developed in the past to synthetically generate ground motions 

(see the review in Chapter 1). One group of models are physics-based seismological models that 

produce realistic accelerograms at low frequencies but often need to be combined with stochastic 

models known to be more appropriate at high frequencies; the resulting combination is usually 

referred to as a hybrid model. The physics-based seismological models tend to be too complicated 

for use in engineering practice, as they require a thorough knowledge of the source, wave path, and 

site characteristics, which are typically not available to a design engineer. As a result, these models 

are rarely used for engineering purposes. Our aim in this study is to develop a method for 

generating synthetic ground motions that uses information that is readily available to the practicing 

engineer. We employ a site-based (as opposed to modeling the seismic source) stochastic ground 

motion model that focuses on realistically representing those features of the ground motion that are 

known to be important to the structural response, e.g., intensity, duration, and frequency content of 

the ground shaking at the site of interest. If the model parameters are known, synthetic acceleration 

time-histories can be generated. In the previous chapter, the proposed stochastic ground motion 

model was calibrated against recorded ground motions, and predictive equations for the model 

parameters were developed in terms of earthquake and site characteristics that are typically 

required as input arguments to GMPEs, i.e., the faulting mechanism, earthquake magnitude, 

source-to-site distance, and shear-wave velocity of the local soil. Considering the success of 

GMPEs in practice, in this chapter, we develop a method for generating synthetic ground motions 

that requires as input arguments only the earthquake and site characteristics mentioned above.  

This chapter starts by describing a method for simulating jointly normal random variables. 

Then the discussion leads to random simulation of the stochastic model parameters for specified 

earthquake and site characteristics. The marginal distributions, predictive equations and correlation 

coefficients developed in Chapter 4 are incorporated for this purpose. Each set of randomly 
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simulated model parameters is then used in turn in the stochastic ground motion model, resulting in 

an ensemble of synthetic motions that account for the natural variability of real ground motions for 

the specified earthquake and site characteristics. Examples of simulated and recorded ground 

motions are provided. Finally, the importance of this study in PBEE is discussed.    

5.2 SIMULATION OF JOINTLY NORMAL RANDOM VARIABLES 

Realizations of a set of statistically independent random variables with known marginal 

distributions (e.g., normal) may be obtained by using standard random number generators. These 

generators are available in most statistical toolboxes. In this study, we employ the random 

number generator in the statistics toolbox of MATLAB, which starts by generating realizations 

of uniformly distributed random variables and then produces realizations of random variables for 

other distributions either directly (i.e., from the definition of the distribution) or by using 

inversion (i.e., by applying the inverse function for the distribution to a uniformly distributed 

random number11) or rejection (an iterative scheme used when the functional form of a 

distribution makes it difficult or time consuming to use direct or inversion methods) methods. In 

this study, for generating normally distributed random variables, the Ziggurat algorithm by 

Marsaglia and Tsang (2000) is employed as the default in MATLAB. 

To generate realizations of jointly normal random variables, the correlation coefficients 

between the variables must be accounted for. Therefore, simple use of random number 

generators that result in uncorrelated realizations is not sufficient. Some statistical toolboxes, 

including the statistics toolbox in MATLAB, have the capability to generate correlated normal 

random variables. The approach used in this study to generate realizations of jointly normal 

random variables given realizations of uncorrelated standard normal random variables is 

presented below.  

Let ܆ = [ ଵܺ, ܺଶ, … , ܺ௡]T, where the superposed T indicates the matrix transpose, be a 

vector of ݊ jointly normal random variables with the mean vector, ܆ۻ, and covariance matrix, ઱܆܆, such that 

                                                 
11 If F is a continuous distribution with inverse Fିଵ, and ܷ is a uniformly distributed random variable on the unit 

interval [0,1], then Fିଵ(ܷ) has distribution F. 
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܆ۻ  = ൦ߤଵߤଶߤڭ௡൪              ઱܆܆ = ൦ ]ݎܸܽ ଵܺ]ݒ݋ܥ[ܺଶ, ଵܺ] [ଶܺ]ݎܸܽ ڭ            .݉ݕݏ ,௡ܺ]ݒ݋ܥڭ ଵܺ] ,௡ܺ]ݒ݋ܥ ܺ2 ] ڰ       … ൪ (5.1)[௡ܺ]ݎܸܽ

where ߤ௜ and ܸܽݎ[ ௜ܺ], ݅ = 1, … , ݊, denote the mean and the variance of ௜ܺ respectively, and ݒ݋ܥ[ ௜ܺ, ௝ܺ] denotes the covariance of ௜ܺ and ௝ܺ. The realizations of ܆ may be obtained by use of 

the linear transformation: 

ܠ  = ܆ۻ + ܂܆܆ۺ (5.2) ܡ

In the above expression, the lower case, ܠ, is used to denote a realization of the vector of random 

variables ܡ ;܆ is a realization of the vector of uncorrelated standard normal random variables ܇ = [ ଵܻ, ଶܻ, … , ௡ܻ]T; and ܂܆܆ۺ  is a lower triangular matrix obtained from the Cholesky 

decomposition of the covariance matrix ઱܆܆ such that ઱܆܆ = ܂܆܆ۺ  The Cholesky .܆܆ۺ

decomposition is made possible because the covariance matrix ઱܆܆ is positive definite (provided 

there is no linear relation between the random variables). This means that for any non-zero 

column-vector ܉ of size ݊, ܂܉઱܉܆܆ ൐ 0.  

The expression in (5.2) transforms uncorrelated standard normal random variables into 

jointly normal random variables (i.e., transforms ܡ to ܠ). By definition, ܡ has a zero mean vector 

and an identity covariance matrix. It follows that the mean vector and the covariance matrix of ܆ۻ + ܂܆܆ۺ  To obtain a .܆ respectively. Hence, (5.2) is a realization of vector ܆܆and ઱ ܆ۻ are ܡ

realization of ܆, we first obtain a realization of ܡ by individually simulating its components, and 

then use (5.2) to compute the corresponding realization, ܠ. 

5.2.1 Conditional Simulation of a Subset of Jointly Normal Random Variables 

It may be of interest to generate realizations of a subset of jointly normal random variables ܉܆ = [ ଵܺ, ܺଶ, … , ܺ௞]T, ݇ ൏ ݊, given observed values for the remainder of variables ܊܆ =[ܺ௞ାଵ, … , ܺ௡]T. When simulating, it is important to account for the correlations between the 

variables of ܉܆ and ܊܆,; hence, conditional simulation is necessary. If the set of random variables ܆ = [ ଵܺ, ܺଶ, … , ܺ௡]T is jointly normal, then the conditional distribution of the subset ܉܆ given ܊܆ =  and ܊|܉ۻ is also jointly normal. Once the corresponding conditional mean vector ܊ܠ
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covariance matrix ઱܊܊|܉܉ are determined, the linear transformation in (5.2) can be used to 

generate realizations of the subset ܉܆. 

Obtaining the conditional mean vector and covariance matrix requires partitioning of the 

mean vector and covariance matrix of ܆ in the form: 

܆ۻ  = ൥ −܉ۻ ܊ۻ− ൩              ઱܆܆ = ൥ ઱܉܉ | ઱܊܉− − − − − −઱܉܊ | ઱܊܊ ൩ (5.3)

Then the conditional mean vector and covariance matrix are given by  

܊|܉ۻ  = ܉ۻ + ઱܊܉઱܊ି܊૚(܊ܠ − (5.4) (܊ۻ

 ઱܊܊|܉܉ = ઱܉܉ − ઱܊܉઱܊ି܊૚઱(5.5) ܉܊

which are used in (5.2) to generate realizations of the subset ܉܆ given ܊܆ =   .܊ܠ

For more details on properties of multinormal probability distribution and conditional 

simulation of random variables, refer to standard probability and statistics books such as Kotz et 

al. (2000) or Anderson (1958). Specifically for conditional simulation and partitioning of the 

mean vector and the covariance matrix refer to Theorem 2.5.1 of Anderson (1958). 

5.3 RANDOM SIMULATION OF MODEL PARAMETERS 

When generating synthetic ground motions, it is desired to maintain the natural variability that 

exists among real earthquake ground motions for a given set of earthquake and site 

characteristics. This requires accounting for the variability in the model parameters, i.e., (ܫ ҧ௔, ,ହିଽହܦ ,௠௜ௗݐ ߱௠௜ௗ, ߱ᇱ, ߞ௙), which are regarded as random variables. To achieve this goal, it is 

necessary to randomly simulate realizations of the model parameters using their joint distribution 

conditioned on the earthquake and site characteristics. This joint distribution is unknown, but 

marginal distributions for each model parameter were proposed in Chapter 4. The proposed 

marginal distributions allow transformation of the model parameters to the standard normal 

space by (4.1), resulting in the vector of random variables ૅ = ,ଵߥ] ,ଶߥ … ,  ଺]T. Each transformedߥ

model parameter, ߥ௜, ݅ = 1, … ,6, follows a normal distribution with mean ߤ௜(ܨ, ,ܯ ܴ, ܸ, ઺௜), 

which is a function of the earthquake and site characteristics and can be computed using the 

predictive equations provided by (4.19) and (4.20). It has a standard deviation equal to the 

standard deviation of the total error in the predictive equations (i.e., ඥ߬௜ଶ +  ,௜ଶ). Furthermoreߪ
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estimated correlation coefficients between the transformed model parameters are provided in 

Table 4.9. For ૅ, we assume a jointly normal distribution which is consistent with the set of 

marginals and correlations mentioned above. This is equivalent to assuming that the original 

parameters have the Nataf joint distribution (Liu and Der Kiureghian 1986). Due to the 

dependence of the mean on ܨ, ,ܯ ܴ, and ܸ, the joint distribution is conditioned on the earthquake 

and site characteristics. Therefore, given a set of earthquake and site characteristics, transformed 

model parameters are simulated as jointly normal random variables, which are then transformed 

back to their physical space by using the inverse of (4.1).  

To randomly simulate realizations of the vector of jointly normal random variables ૅ = ,ଵߥ] ,ଶߥ … ,  ,and the covariance matrix, ઱ૅૅ ,ૅۻ ,଺]T, we construct the mean vectorߥ

according to (5.1). The linear transformation in (5.2) is then employed to generate sample 

realizations of ૅ. Alternatively, the total error terms in the predictive equations of Chapter 4 may 

be regarded as jointly normal random variables with zero mean vector and covariance matrix ઱ૅૅ. They can be simulated according to (5.2) and added to the predicted mean values of each ߥ௜ 
to generate sample realizations of ૅ. If the values for a subset of the model parameters are given 

(e.g., ߥଵ is fixed), the conditional mean vector (e.g., ۻ[ఔమ,…,ఔల]|ఔభ) and the conditional covariance 

matrix (e.g., ઱[ఔమ,…,ఔల],[ఔమ,…,ఔల]|ఔభఔభ) are computed for the remainder of these random variables as 

described in Section 5.2.1 and are employed in (5.2) to generate sample realizations. As 

previously mentioned, the simulated realizations of ૅ are transformed to the original space of the 

corresponding model parameter by using the inverse of (4.1) and the assigned marginal 

distributions in Table 4.4. This results in realizations of ܫ ҧ௔, ,ହିଽହܦ  ,௠௜ௗݐ   ߱௠௜ௗ,  ߱ᇱ, and ߞ௙ for the 

specified earthquake and site characteristics used to construct ૅۻ.  

As an example, four sets of model parameters are simulated for the earthquake and site 

characteristics: ܨ = ܯ ,1 = 7.35, ܴ = 14 km, and ܸ = 660 m/s. These characteristics 

correspond to the earthquake and site that produced a real ground motion recorded at Dayhook 

station during the 1978, Tabas, Iran, earthquake. The model parameters for the recorded motion 

are identified and reported along with the simulated model parameters in Table 5.1. These values 

belong to the records of Figure 4.1, previously discussed in Chapter 4, which demonstrates the 

effect of using different model parameters on the variability in a suite of ground motions. The 

model parameters for the records on the left of the figure are identical to the model parameters of 
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the recorded motion, while the model parameters for the records on the right of the figure are all 

different but correspond to the same earthquake and site characteristics. The set of motions with 

variable model parameters demonstrates a larger variability, representative of the natural 

variability among real ground motions (examples in the upcoming sections will support this 

statement), and are better suited for use in assessment or design of structures for a given design 

scenario, i.e., given earthquake and site characteristics. 

Now that we are able to simulate sets of model parameters for specified earthquake and 

site characteristics, each set may be used in the stochastic ground motion model to generate a 

single synthetic ground motion. The next section provides more details and examples on 

simulation of ground motions for specified earthquake and site characteristics. 

5.4 RANDOM SIMULATION OF GROUND MOTIONS 

Given a design scenario expressed in terms of ܨ, ,ܯ ܴ, and ܸ, any number of synthetic ground 

motions can be generated based on the information provided in the preceding sections and 

without the need for any previously recorded motion. The details are described below. Here, we 

employ the stochastic ground motion model of Chapter 4 (i.e., stochastic model proposed in 

Chapter 2 with the modulating function, the linear filter, and the model parameters that were 

specified in Chapter 4). 

Given ܯ ,ܨ, ܴ, and ܸ, sample realizations of random variables ݒ௜, ݅ = 1, … ,6, are 

generated and transformed to sample realizations of model parameters (ܫ ҧ௔, ,ହିଽହܦ ,௠௜ௗ,߱௠௜ௗݐ ߱ᇱ,  ௙) according to Section 5.3. The first three parameters are then converted to theߞ

gamma modulating function parameters હ = ,ଵߙ) ,ଶߙ  ,ଷ) according to (4.6), (4.7), and (4.9)ߙ

yielding the set (ߙଵ, ,ଶߙ ,ଷߙ ߱௠௜ௗ, ߱ᇱ, ௙). ଴ܶߞ = 0 is assumed for simulation purposes. These 

parameter values together with a set of ݊ statistically independent standard normal random 

variables ݑ௜, ݅ = 1, … , ݊, are used in the stochastic model in (2.12) and the high-pass filter in 

(2.28) to generate a synthetic accelerogram, ݖሷ(ݐ). Any number of accelerograms for the given 

earthquake and site characteristics can be synthesized by generating new realizations of ݒ௜ and ݑ௜. This procedure is summarized in Figure 5.1. The following presents examples of simulations 

for Scenario I: when all the model parameters are unknown, and for Scenario II: when a subset of 

the model parameters is specified. 
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5.4.1 Scenario I: All Model Parameters Are Unknown 

The simulation method described above maintains the natural variability of ground motions for a 

given set of earthquake and site characteristics. To demonstrate this, in Figures 5.2, 5.3, and 5.4 

we show three sets of ground motions for given values of ܨ, ,ܯ ܴ, and ܸ. (To better observe 

traces of the time-histories provided in these and subsequent figures, different scaling is used for 

the vertical axes.) Each set includes one recorded motion and four simulated motions. For each 

motion the acceleration, velocity, and displacement time-histories are given. Also listed in the 

figures are the model parameters for each motion (identified for the recorded motions and 

randomly simulated for the synthetic motions). For the synthetic motions, a discretization step of 

Δݐ = 0.02 s and the high-pass filter frequency ߱௖ ߨ2 = 0.15 Hz⁄  are used. Observe that 

although the three events have almost12 identical earthquake and site characteristics (all are 

reverse faulting; ܯ = 6.61, 6.93, and 6.69; ܴ =19.3, 18.3, and 19.1 km; and ܸ = 602, 663, and 

706 m/s), the three recorded motions are vastly different in their characteristics. Specifically, 

their Arias intensities range from 0.040 to 0.109 s.g., effective durations range from 5.95 to 

12.62 s, predominant frequencies range from 3.97 to 14.58 Hz, and bandwidth parameters range 

from 0.03 to 0.24. Furthermore, the acceleration, velocity, and displacement traces and their peak 

values are vastly different. Similar variability can be observed among the simulated motions 

(compare the parameter values and the traces). Also, observe that the general features of the 

simulated motions are similar in character to those of the recorded motions. In a blind test, it 

would be difficult, or impossible, for anyone to ascertain as to which of the presented ground 

motions in these figures is the recorded one and which are synthetic. 

Another three sets of ground motions are provided in Figures 5.5–5.7. Similar results are 

observed. The three events have almost identical earthquake and site characteristics (all are 

strike-slip faulting; ܯ = 6.53, 6.33, and 6.19; ܴ = 15.2, 14.4, and 14.8 km; and ܸ = 660, 660, 

and 730 m/s), but vastly different in their characteristics. Similar variability is observed among 

the simulated motions. And the general features of the simulated motions, i.e., the traces of 

                                                 
12 Due to scarcity of recorded motions, it is difficult to find records that have resulted from different earthquake 

events but belong to identical earthquake and site characteristics. In fact, many researchers create large magnitude-
distance bins (often larger than what has been selected in this study) to select recorded motions and declare them 
as records with similar earthquake and site characteristics. 
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acceleration, velocity, and displacement time-histories, are similar in character to those of the 

recorded motions. 

5.4.2 Scenario II: Some Model Parameters Are Specified 

It might be of interest to simulate ground motions with given values for a subset of the model 

parameters, e.g., Arias intensity, effective duration, or predominant frequency. In such cases, the 

corresponding ݒ௜ variables are fixed, while the remaining ݒ௝, ݆ ് ݅, variables are generated using 

the conditional mean vector and covariance matrix for the given values of the fixed variables. 

These conditional matrices are computed based on formulas provided in Section 5.2.1. 

Conditional simulation is necessary in such cases to account for the correlations among the fixed 

and varying parameters.  

As an example, Figure 5.8 shows the recorded motion in Figure 5.4 together with four 

synthetic accelerograms, which are conditioned to have the Arias intensity of the recorded 

motion. The synthetics are obtained by generating sets of the five variables ݒଶ to ݒ଺ for the given 

value ݒଵ = ln(0.109) of the first variable. Observe that the variability among the simulated 

motions is somewhat smaller compared to the case in Figure 5.4, where the Arias intensity was 

not specified. 

Since Arias intensity and duration of the ground motion are of particular interest in the 

fields of geotechnical and structural engineering, empirical relations for these parameters have 

been developed by other researchers (e.g., Travasarou et al. [2003], Abrahamson and Silva 

[1996]). If desired, it is possible to use other empirical formulas to estimate one or more of the 

model parameters, such as ܫ ҧ௔ and ܦହିଽହ. However, ground motion databases used in other 

studies are generally different from the one used in this study. On the other hand, the estimates of 

correlations between the model parameters depend on the selected database. Therefore, the 

correlation coefficients provided in this study (corresponding to a database of strong ground 

motions on firm soil with source-to-site distance of at least 10 km) would only be rough 

estimates if used. Finally, it should be emphasized that if more than one parameter is 

approximated by alternative empirical relations, the correlations between these parameters must 

also be taken into consideration in constructing the conditional mean vector and covariance 

matrix according to (5.4) and (5.5). 
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5.4.3 Total Duration of Motion and Filter Frequency 

When simulating ground motions, the total duration of motion, ݐ௡, is rather arbitrary. However, 

some care must be exercised to ensure that the resulting synthetic motion is simulated 

sufficiently long for the residuals to reach zero. At the same time, if ݐ௡ is large, the filter 

frequency, which is in the form of a linear function in time, may assume zero, negative, or 

unreasonably high values. To avoid these situations, we need certain limitations on ݐ௡ and ߱௙(ݐ). 

We have found that a total duration equal to two or three times the effective duration ܦହିଽହ is usually sufficient to achieve zero residuals. Two examples are presented in Figures 5.9 

and 5.10, respectively for linearly decreasing and linearly increasing filter frequencies, where ݐ௡ =  ହିଽହ is used. The linear filter frequency functions used to generate these motions, basedܦ3

on (4.10), are also plotted for each figure. To avoid unreasonably low or high values of filter 

frequency (e.g., beyond 25 s in Fig. 5.9, or 40 s in Fig. 5.10), limits must be assigned to (4.10). 

Recalling that the database for the two parameters ߱௠௜ௗ and ߱Ԣ was created by analyzing 

recorded motions within 1% to 99% levels of their Arias intensities, we modify ߱௙(ݐ) such that 

it is a linear function within 1% to 99% of the expected Arias intensity ܫ ҧ௔ [see (4.3)], and 

constant outside that time bracket with a minimum value of 0.3 Hz.  

 ߱௙(ݐ) = ቐ max[߱௠௜ௗ + ߱ᇱ(ݐ௦ − ,(௠௜ௗݐ [(ߨ2)0.3 if 0 ൑ ݐ ൏ ௦  max[߱௠௜ௗݐ + ߱ᇱ( ݐ − (௠௜ௗݐ [(ߨ2)0.3, if ୱݐ ൑ ݐ ൑ max[߱௠௜ௗ  ୣݐ + ߱ᇱ(ݐ௘ − ,(௠௜ௗݐ [(ߨ2)0.3 if ௘ݐ ൏ ݐ ൑ ௡ݐ  (5.6)

In the above expression, ݐ௦ and ݐ௘ refer to the times of 1% and 99% ܫ ҧ௔. Plots of simulated 

motions with filter frequency according to (5.6) are also shown in Figures 5.9 and 5.10. Inside 

the time bracket [ݐ௦,  ௘], the two simulated motions with filter frequencies according to (4.10)ݐ

and (5.6) are identical. Outside this time bracket, differences between time-histories are 

insignificant, but unlike (4.10), the filter frequency according to (5.6) is physically reasonable. 

5.5 USE IN PBEE  

The growing interest in performance-based earthquake engineering (PBEE) in recent years , e.g., 

see Bozorgnia and Bertero (2004), and the scarcity of recorded ground motions for many regions 

of the world necessitate the use of synthetic ground motions with specified earthquake and site 

characteristics. In PBEE, an ensemble of ground motions that represents all possible realizations 
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for an earthquake of given characteristics at a given site is of interest. As described in this 

chapter, such an ensemble may be obtained by generating ground motion realizations that 

correspond to various realizations of the stochastic model parameters, randomly generated from 

probability distributions that are conditioned on the given earthquake and site characteristics. 

The main attraction of PBEE is going above and beyond the code specifications (i.e., life-

safety performance objective for rare earthquake ground motions) to meet the specific needs of 

the owners and other stakeholders. As a result, various performance objectives (e.g., life-safety, 

cost, and post-earthquake functionality) for specified hazard levels are to be considered, resulting 

in multiple design scenarios and increasing the number of required ground motion time-histories. 

Synthetic ground motions can be generated for specified design scenarios for which recorded 

motions are lacking.  

Furthermore, the simulation approach proposed in this study can be used to investigate 

structural responses to various ground motion intensities. This is useful because PBEE analysis 

typically considers the entire spectrum of structural response, from linear to grossly nonlinear 

and even collapse. Therefore, there is need for ground motions with different levels of intensity. 

Since the number of available recordings is limited, the current practice requires modification of 

recorded motions to achieve various intensity levels. However, to adequately capture nonlinear 

structural responses, realistic characterization of the ground motion is essential and unless 

extreme care is taken, scaled (in time or frequency) ground motions with unrealistic properties 

are difficult to avoid. It has been the focus of the present study to realistically represent the 

evolutionary characteristics of ground motions such as the time-varying frequency content that 

can greatly influence the nonlinear responses of degrading structures. Furthermore, the 

parameters of the stochastic model are fitted to a database of real earthquake records so that the 

model captures the natural characteristics and variability of recorded motions. Therefore, 

realistic synthetic motions may be generated based on this study to complement the existing 

recorded motions for a specified set of earthquake and site characteristics. 

Finally, in PBEE, fragility models for structural damage measures (Vamvatsikos and 

Cornell 2002) are often utilized to determine failure and damage probabilities. The method of 

ground motion simulation presented in this study can facilitate evaluation of fragility models for 

a given design scenario that is specified by its earthquake and site characteristics. 
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Table 5.1 Four sets of simulated and one set of identified model parameters for a single set 
of earthquake and site characteristics. Observe the variability among the model 
parameters. 

 
௔(s.g.)ܫ ହିଽହ(s)ܦ ௠௜ௗ(s)ݐ ߱௠௜ௗ ⁄ߨ2  (Hz) ߱Ԣ ⁄ߨ2  (Hz/s) ߞ௙(Ratio)

Simulated model parameters 
  

(corresponding to the motions on the 
right side of Figure 4.1, respectively 

from top to bottom) 

0.075 20.1 7.0 4.84 −0.012 0.25
0.288 21.3 16.5 2.48 −0.054 0.12
0.124 15.3 14.9 3.72 0.0039 0.40
0.147 15.5 10.0 6.22 0.00046 0.18

 
Identified model parameters 

 
(corresponding to the recorded motion 
and simulated motions on the left side 

of Fig. 4.1) 
 

0.145 12.3 6.8 5.90 0.12 0.26 
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Fig. 5.1  Simulating ground motions for specified earthquake and site characteristics. 
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Realizations of model parameters: 

I
a
 

 

s.g. 

D
5-95

 
 

s 

t
mid

 
 

s 

ω
mid

/2π 
 

Hz 

ω’/2π 
 

Hz/s 

ζ
f
 

 

 

0.040          5.95         0.93        14.58         −0.53       0.18 

0.028        15.03       11.33          4.35         −0.18       0.07 

0.067          8.92         3.42        10.05         −0.53       0.49 

0.021        10.02         3.34          7.84        −0.16       0.33 

0.123          9.73         5.12          3.12        −0.004     0.58 

  

 

Fig. 5.2 Recorded and synthetic motions corresponding to ࡲ = ૚ (reverse faulting), ࡹ = ૟. ૟૚, ࡾ = ૚ૢ. ૜ ܕܓ, ࢂ = ૟૙૛ ܛ/ܕ. Recorded motion is component 291 of 
the 1971 San Fernando earthquake at the Lake Hughes #12 station. 
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Realizations of model parameters: 

I
a
 

 

s.g. 

D
5-95

 
 

s 

t
mid

 
 

s 

ω
mid

/2π 
 

Hz 

ω’/2π 
 

Hz/s 

ζ
f
 

 

 

0.045         12.62        4.73        3.97           −0.08       0.03 

0.023         20.02      11.23      15.67           −0.08       0.34 

0.043           8.50        3.35        4.04             0.09       0.25 

0.126         12.22        7.48      11.05             0.01       0.10 

0.070         10.33         4.74       3.10           −0.15      0.09 

  
 

Fig. 5.3 Recorded and synthetic motions corresponding to ࡲ = ૚ (reverse faulting), ࡹ = ૟. ૢ૜, ࡾ = ૚ૡ. ૜ km, , ࢂ = ૟૟૜ m/s. Recorded motion is component 090 of 
the 1989 Loma Prieta earthquake at the Gilroy Array #6 station. 
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Realizations of model parameters: 

I
a
 

 

s.g. 

D
5-95

 
 

s 

t
mid

 
 

s 

ω
mid

/2π 
 

Hz 

ω’/2π 
 

Hz/s 

ζ
f
 

 

 

0.109         7.96        7.78        4.66           −0.09        0.24 

0.140       13.06      13.24        3.73           −0.18        0.03 

0.150       11.27        6.41        6.07           −0.07       0.29 

0.010       12.05        4.09      11.45           −0.45       0.11 

0.244       16.63      10.23        5.71           −0.04       0.14 

  
 

Fig. 5.4 Recorded and synthetic motions corresponding to ࡲ = ૚ (reverse faulting), ࡹ = ૟. ૟ૢ, ࡾ = ૚ૢ. ૚ ܕܓ, ࢂ = ૠ૙૟ ܛ/ܕ. Recorded motion is component 090 of 
the 1994 Northridge earthquake at the LA 00 station. 
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Realizations of model parameters: 

I
a
 

 

s.g. 

D
5-95

 
 

s 

t
mid

 
 

s 

ω
mid

/2π 
 

Hz 

ω’/2π 
 

Hz/s 

ζ
f
 

 

 

0.137        36.23     17.60        4.16           −0.06        0.34 

0.088       11.14        5.63        2.72           −0.11        0.19 

0.038       24.66        8.07        3.43           −0.06       0.08 

0.146       16.60      10.89       2.28            −0.03       0.21 

0.301       10.24      11.12       5.55            −0.01       0.27 

  

Fig. 5.5 Recorded and synthetic motions corresponding to ࡲ = ૙ (strike-slip faulting), ࡹ = ૟. ૞૜, ࡾ = ૚૞. ૛ ܕܓ, ࢂ = ૟૟૙ ܛ/ܕ. Recorded motion is component 237 of 
the 1979 Imperial Valley-06 earthquake at the Cerro Prieto station. 
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Realizations of model parameters: 

I
a
 

 

s.g. 

D
5-95

 
 

s 

t
mid

 
 

s 

ω
mid

/2π 
 

Hz 

ω’/2π 
 

Hz/s 

ζ
f
 

 

 

0.102          7.56        5.68         5.99           −0.23       0.73 

0.095        19.61      14.98       13.01           −0.43       0.43 

0.003        21.66        4.00       11.67          −0.16       0.23 

0.016        13.86        5.15         8.43          −0.43       0.55 

0.233          8.67        3.40         4.23             0.03       0.41 

  

Fig. 5.6 Recorded and synthetic motions corresponding to ࡲ = ૙ (strike-slip faulting), ࡹ = ૟. ૜૜, ࡾ = ૚૝. ૝ ܕܓ, ࢂ = ૟૟૙ ܛ/ܕ. Recorded motion is component 315 of 
the 1980 Victoria, Mexico, earthquake at the Cerro Prieto station. 
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Realizations of model parameters: 

I
a
 

 

s.g. 

D
5-95

 
 

S 

t
mid

 
 

s 

ω
mid

/2π 
 

Hz 

ω’/2π 
 

Hz/s 

ζ
f
 

 

 

0.005          8.18       3.78          7.43           −0.16       0.07 

0.219          8.89       1.54          5.61           −0.09       0.24 

0.027        18.94       8.20         9.86           −0.10       0.35 

0.079        22.00     12.12         3.95           −0.09       0.11 

0.088        10.07       8.90         9.67           −0.02       0.34 

  

Fig. 5.7 Recorded and synthetic motions corresponding to ࡲ = ૙ (strike-slip faulting), ࡹ = ૟. ૚ૢ, ࡾ = ૚૝. ૡ ܕܓ, ࢂ = ૠ૜૙ ܛ/ܕ. Recorded motion is component 337 of 
the 1984 Morgan Hill earthquake at the Gilroy – Gavilan Coll. station. 
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Realizations of model parameters: 

I
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s.g. 

D
5-95
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t
mid
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ω
mid

/2π 
 

Hz 

ω’/2π 
 

Hz/s 

ζ
f
 

 

 

0.109          7.96        7.78         4.66          −0.09        0.24 

0.109          5.42        1.67         5.95          −0.50        0.44 

0.109        11.72        5.61         5.30           0.003       0.22 

0.109          5.86        3.13         9.57         −0.10        0.34 

0.109          8.76        6.16       11.85         −0.20        0.21 

  

Fig. 5.8 Recorded and synthetic motions with specified Arias intensity. Recorded motion 
and earthquake and site characteristics are the same as in Fig. 5.4. 
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Fig. 5.9 Two simulated motions: one has a linearly decreasing filter frequency according 
to Eq. (4.10); the other has a filter frequency with imposed limits according to Eq. 
(5.6). Both motions have a total duration of ࢔࢚ = ૜ࡰ૞ିૢ૞. Model parameters are ࡵതࢇ = ૙. ૜ s.g., ࡰ૞ିૢ૞ = ૚૞ s, ࢊ࢏࢓࢚ = ૚૙ s, ࣓ࢊ࢏࢓ ૛࣊ = ૞. ૞⁄  Hz, ࣓Ԣ ૛࣊ = −૙. ૜૞⁄  
Hz/s, ࢌࣀ = ૙. ૞૞.  
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Fig. 5.10 Two simulated motions: one has a linearly increasing filter frequency according 
to Eq. (4.10); the other has a filter frequency with imposed limits according to 
Eq. (5.6). Both motions have a total duration of ࢔࢚ = ૜ࡰ૞ିૢ૞. Model parameters 
are ࡵതࢇ = ૙. ૜ s.g., ࡰ૞ିૢ૞ = ૛૙ s, ࢊ࢏࢓࢚ = ૚૞ s, ࣓ࢊ࢏࢓ ૛࣊ = ૟⁄  Hz, ࣓Ԣ ૛࣊ = +૙. ૜૞⁄  
Hz/s, ࢌࣀ = ૙. ૞૞.   
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6 Model Validation 

6.1 INTRODUCTION 

The proposed method of generating a suite of synthetic ground motions for specified earthquake 

and site characteristics provides an appropriate representation of real ground motions that could 

result from an earthquake and a site with the given characteristics. This claim was partially 

validated in the previous chapters through modeling and examination of simulated time-histories, 

showing that synthetics are representative of real ground motions. For example, the stochastic 

process that models acceleration time-histories possesses both temporal and spectral 

nonstationary characteristics observed in real ground motions. Adjustments have been made to 

the model to ensure that residual velocity and displacement are zero (equivalent of base-line 

correction with recorded motions). Furthermore, we know that these synthetic acceleration time-

histories have evolutionary statistical characteristics similar to real accelerograms. This was 

achieved by scrutinizing the statistical characteristics of many recorded ground motions and 

modeling the stochastic process accordingly. Among these evolutionary statistical characteristics 

were the evolving cumulative energy (controlling intensity and duration of the motion), which 

was measured by graphs similar to the one in Figure 3.2a, and the evolving frequency content, 

which was measured by graphs similar to the ones in Figures 3.4 and 3.5. In addition to 

acceleration, velocity and displacement time-histories were studied and qualitatively 

(considering their general features such as frequency contents and time-history traces) compared 

with real ground motions recorded during previous earthquakes (see Chapter 5). These 

comparisons indicated that not only acceleration, but also velocity and displacement time-

histories of synthetic motions have characteristics and variability similar to those of real 

earthquake ground motions. In this chapter, the proposed method of generating a suite of 

synthetic ground motions for specified earthquake and site characteristics is validated through 

examination of elastic response spectra. Working with the elastic response spectrum allows the 



 

130 

 

variability among synthetic and real ground motions to be measured and compared quantitatively 

(as opposed to the qualitative comparison between time-histories presented in Chapter 5). 

The response spectrum of an acceleration time-history is the plot of the absolute peak 

responses of single-degree-of-freedom oscillators with a specified damping subjected to that 

acceleration time-history at its base against their natural frequencies (or periods). Response 

spectra are useful tools in earthquake engineering because structural design is usually based on 

the peak values of earthquake-induced forces and deformations. A response spectrum 

corresponding to a design scenario (identified by its earthquake and site characteristics) is 

usually referred to as the design response spectrum. Code provisions and empirical ground 

motion prediction equations (GMPEs) are available that aid in constructing design response 

spectra for given earthquake and site characteristics. While a response spectrum may be used 

directly to calculate an exact solution for the response of a single-degree-of-freedom linear 

system, it may be utilized to obtain an approximate solution for the response of a multi-degree-

of-freedom linear system (e.g., by modal combination). This type of structural analysis is 

referred to as response-spectrum analysis, which due to its simplicity is frequently used in 

practice, though it is applicable only to linear systems. If a structure is expected to behave 

nonlinearly, more complex approaches such as response-history analysis are necessary, which 

requires knowledge of acceleration time-histories. The subject of this study has been to generate 

time-histories for response-history analysis. Considering the frequent use of response spectrum 

in practice, a reasonable validation approach for the simulated time-histories in this study is to 

investigate the validity of their elastic response spectra by comparisons against the response 

spectra of real ground motions and by comparisons against existing GMPEs that are used and 

trusted in practice for prediction of design response spectra.   

In this chapter, first the elastic response spectra of synthetic motions are compared to 

those of recorded motions. For selected earthquake and site characteristics, specific examples are 

provided to illustrate that the response spectrum of a recorded motion (regarded as just one 

realization of possible ground motions for the specified design scenario) is within the range 

predicted by synthetic motions at any given spectral period. Then, the statistics of the elastic 

response spectra of a large number of simulated motions are compared to values predicted by the 

existing GMPEs for various design scenarios. It is concluded that, in general, the median and 

variability of the response spectra of simulated ground motions closely agree with the median 



 

131 

 

and variability predicted by the Next Generation Attenuation (NGA) GMPEs. Also, limitations 

on the applicability of synthetic motions (e.g., in terms of spectral periods and earthquake and 

site characteristics) are discussed. 

6.2 VALIDATION AGAINST RECORDED GROUND MOTIONS 

To validate the simulated ground motions against real ground motions, for specified earthquake 

and site characteristics 5% damped elastic response spectra of a large number of synthetic 

motions are calculated and compared to those of a recorded motion having the specified 

earthquake and site characteristics. The objective of this comparison is to examine each spectral 

period and see whether the corresponding recorded spectral value falls within the range predicted 

by the synthetic spectral values. This result is expected if the suite of synthetic motions 

adequately represents the natural variability of real ground motions for the given earthquake and 

site characteristics. To compute the response spectrum of an acceleration time-history, single-

degree-of-freedom oscillators with a range of natural frequencies and damping ratio of 0.05 are 

subjected to the acceleration time-history. Numerical time-stepping methods are then used to 

estimate the response of the oscillator over time. For each oscillator with natural frequency, ߱௡, 

the peak displacement response over time, ܦ௡, is selected. The plot of peak displacement 

responses, ܦ௡, versus spectral periods, ௡ܶ = ߨ2 ߱௡⁄ , is referred to as the displacement response 

spectrum, while the plot of ܣ௡ = ߱௡ଶܦ௡ versus ௡ܶ is referred to as the pseudo-acceleration 

response spectrum. In particular, the response spectra shown in the figures of this report have 

been computed using the central difference method (see Chopra [2001], Chapter 5), which is 

stable when Δݐ ௡ܶ⁄ ൏ 1 ⁄ߨ . 

Six sets of comparisons are provided in Figures 6.1–6.6. Each figure shows 5% damped 

elastic response spectra of two horizontal components of a recorded ground motion against 5% 

damped elastic response spectra of 50 synthetic ground motions generated for the same fault 

type, moment magnitude, source-to-site distance, and ܸ (abbreviated notation for ௌܸଷ଴, the shear-

wave velocity of top 30 m) values as the recorded motion. The synthetic motions are simulated 

for a total duration of ݐ௡ =  ହିଽହ, a time discretization step equal to 0.01 s, and a filterܦ2

frequency of 0.1 Hz for the high-pass filtering according to (2.28). Figures 6.1 and 6.2 show 

accelerograms recorded during the 1994 Northridge earthquake (reverse faulting, ܯ = 6.69), but 
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at different locations. Figure 6.1 corresponds to a distance of ܴ = 20.3 km with ܸ = 1223 m/s, 

while Figure 6.2 corresponds to a distance of ܴ = 41.6 km with ܸ = 822 m/s. It is seen that the 

spectra of the recorded motions, which should be regarded as resulting from just one pair of 

realizations of possible ground motions produced by an earthquake of similar characteristics, are 

within the range of variability of the spectra of the simulated motions throughout the period 

range considered. This supports our claim that the variability observed in the spectra of the 

synthetic motions is representative of the variability inherent in real ground motions for given 

earthquake and site characteristics. Similar results are observed in Figures 6.3–6.6, which have 

been selected to represent ground motions induced from earthquakes of different magnitudes. 

Moment magnitudes of the events that produced the records presented in these figures are ܯ = 6.36, 6.93, 7.35, and 7.62, respectively, each belonging to a different magnitude bin: 6.0 

to 6.5, 6.5 to 7.0, 7.0 to 7.5, and 7.5 to 8.0.  

The recorded ground motions of the response spectra shown in Figures 6.1–6.6 have been 

processed and high-passed filtered by various reporting agencies. The corner frequency of the 

applied high-pass filter for each record is reported in the PEER-NGA database. These corner 

frequencies are 0.13 and 0.1 Hz for the records of Figure 6.1; 0.12, 0.2, 0.05, and 0.1 Hz for 

both components of the records in Figures 6.2, 6.3, 6.4, and 6.5, respectively; and 0.04 and 0.03 

Hz for the records of Figure 6.6. Even though the corner frequencies of recorded motions vary 

significantly, the filter frequency of 0.1 Hz used for high-pass filtering of the synthetic motions 

according to (2.28) appears to give satisfactory results even for long periods. For example, in 

Figure 6.3, where the recorded motion has been processed with the rather large corner frequency 

of 0.2 Hz, deviations between the synthetic and recorded response spectra are not too large. As 

for the other cases, the spectra of the recorded motions are well within the range of variability of 

the spectra of the 50 synthetic motions.  

In Figures 6.1–6.6, the spectral values are shown up to a period of 10 s. Such long 

spectral periods (e.g., longer than 5 s) are typically unnecessary for structural design and 

analysis. Furthermore, the spectra values at such long periods may not be reliable, as they can be 

sensitive to the procedure selected for processing and high-pass filtering that recorded motions 

are subjected to. We have considered such long periods merely to examine the limitations of our 

simulation method, which appears not to be restricted by spectral periods, at least in the range of 

periods of interest in structural engineering. 
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6.3 VALIDATION AGAINST NGA MODELS 

The Next Generation Attenuation (NGA) models are five sets of ground motion models for 

shallow crustal earthquakes in the Western United States and similar active tectonic regions. The 

five teams who worked on these models were the developers of five pre-existing and widely used 

ground motion attenuation models: (1) Abrahamson and Silva, (2) Boore and Atkinson, (3) 

Campbell and Bozorgnia, (4) Chiou and Youngs, and (5) Idriss. Power et al. (2008) provide an 

overview of the NGA project, and Abrahamson et al. (2008) compare the five NGA models and 

provide explanations for their differences. In addition to many formal publications, reports 

documenting NGA models and the ground motion database are available electronically from the 

PEER website (http://peer.berkeley.edu/ngawest/index.html). 

The NGA models describe the probability distribution (more precisely, the median and 

variability of an assumed distribution) of peak ground motion intensities in terms of the 

properties of the earthquake source (faulting mechanism and magnitude), the wave propagation 

path (source-to-site distance), and site response (site class or ௌܸଷ଴). For more refinement in 

modeling, additional factors have been introduced in some NGA models. For example, the model 

by Chiou and Youngs (2008) includes additional factors to account for the effects of rupture-

depth, hanging-wall, soil/sediment depth, nonlinear site amplification, etc. Other models either 

explicitly or implicitly account for or completely neglect the above mentioned effects. The 

ground motion intensities that have been modeled by NGA project include the peak motion 

values (i.e., peak ground acceleration, velocity, and displacement) and the 5% damped elastic 

pseudo-acceleration response spectra at oscillator periods ranging from 0.01 to 10.0 s. These 

models provide predictions for the geometric average of the two horizontal components. The 

models for response spectra are used in this section for comparison with the spectra of synthetic 

motions. 

6.3.1 Probabilistic Nature of Response Spectrum 

At a given period, the response spectrum ordinate for specified earthquake and site 

characteristics is a random variable. The distribution of this random variable has implicitly been 

assumed to be lognormal by attenuation modelers (including NGA modelers), who have 
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regressed the natural logarithm of the response spectrum ordinate against earthquake and site 

characteristics. Figure 6.7 illustrates the probabilistic nature of the response spectrum. Let ܣ(ܶ) 

represent elastic pseudo-acceleration response spectrum at period ܶ. Figure 6.7 shows the natural 

logarithm of ܣ(ܶ) for an ensemble of 30 simulated records for earthquake and site characteristics ܨ = ܯ ,0 = 7.0, ܴ = 20 km, and ܸ = 760 m/s plotted as a function of ܶ. At any given period ܶ, this ensemble represents sample realizations of ln(ܣ) at that period. As an example, at 0.5 s 

period, the mean and mean േ one standard deviation of the sample realizations of ln(ܣ) are 

indicated by black dots in the figure. Assuming that ܣ is lognormally distributed, the 

corresponding probability density function of ln(ܣ), which is normal, is plotted in the figure at 

the period of 0.5 s. The NGA models predict the mean and standard deviation of the natural 

logarithm of response spectrum at a given period, i.e., the black dots in Figure 6.7. These 

statistics correspond to the median and logarithmic standard deviation of the response spectrum 

at the given period. In the following, these statistics are compared with their corresponding 

values obtained for synthetic motions.  

Error is inherent in statistical descriptors when they are estimated using sample 

realizations of a random variable. The magnitude of this error depends on the sample size. A 

study was performed to identify the required number of simulations that would provide adequate 

accuracy in the sample statistics of the synthetic response spectra. In these studies, 10 sets of ܰ 

synthetic records were simulated. For each set, the logarithmic mean and standard deviation of 

the response spectra were calculated and the variability was examined among the 10 sets. Figure 

6.8 provides plots of the logarithmic means (solid lines) and means േ one standard deviations 

(dotted lines) of response spectra for each of the 10 sets for ܰ = 10, 30, 100, and 500. It was 

concluded that the accuracy of the statistics estimated from 500 simulations is adequate for our 

comparison purposes. 

6.3.2 Comparison with NGA Models 

The synthetic ground motions are intended for use in engineering practice as predictions of 

future earthquake ground motions at a given site. Therefore, a reasonable validation approach is 

to examine how these motions compare with ground motion prediction equations used in 

practice. For this purpose, we compare the statistics of 5% damped elastic response spectra of a 
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set of 500 synthetic accelerograms with the corresponding statistics of response spectra using 

ground motion prediction equations developed by Abrahamson and Silva (2008), Boore and 

Atkinson (2008), Campbell and Bozorgnia (2008), and Chiou and Youngs (2008), which are all 

based on various subsets of the NGA strong-motion database. Recall that the database used in 

this study is a subset of the database used in Campbell and Bozorgnia (2008). Therefore, 

comparisons with Campbell and Bozorgnia model are more appropriate. However, to have a 

more comprehensive study, and considering that usually a combination of the four models 

mentioned above is used in practice, the other three models have also been included. 

To compare the statistics of response spectra for simulated motions with their 

corresponding values predicted by NGA models, 500 realizations of logଵ଴(ܣ) are generated. At 

any given period, sample median and standard deviations, denoted by med(logଵ଴(ܣ)) and std(logଵ଴(ܣ)), are computed. Then 10୫ୣୢ(୪୭୥భబ(஺)) and 10୫ୣୢ(୪୭୥భబ(஺))േୱ୲ୢ(୪୭୥భబ(஺)) are plotted 

in the logarithmic scale. In the following, these plots are referred to as the median and median േ 

one logarithmic standard deviation of response spectra. Equivalent plots are generated for NGA 

models. Since NGA models predict med(ܣ) and std(ln(ܣ)), at a given period, we first calculate  

 med(logଵ଴(ܣ)) = logଵ଴(med(ܣ)) (6.1)

 std(logଵ଴(ܣ)) = std(ln(ܣ))ln(10)  (6.2)

and then plot 10୫ୣୢ(୪୭୥భబ(஺)) and 10୫ୣୢ(୪୭୥భబ(஺))േୱ୲ୢ(୪୭୥భబ(஺)) in the logarithmic scale.  

Figures 6.9 through 6.15 compare the median and median േ one logarithmic standard 

deviation values of the two sets of response spectra (i.e., simulated and predicted) for periods up 

to 5 s for selected moment magnitude (ܯ = 6.0, 6.5, 7.0, 7.5, and 8.0) and source-to-site distance 

values (ܴ = 10, 20, and 40 km for ܯ = 7.0; ܴ =  20 km for other magnitudes). Strike-slip 

faulting and ܸ = 760 m/s are selected in all cases. Also shown, as dashed lines, are the averages 

of the four selected NGA prediction equations. Interpolation is used for periods where NGA 

models are not available. Typical values are chosen for the earthquake and site parameters used 

in NGA models, which are not included in the simulation model. These values are reported in the 

captions of Figures 6.9–6.15.  

Note that the plots are presented in the logarithmic scale. As a result, the spectral values 

and their deviations for long periods appear larger than they really are. It can be seen that except 

for the case of ܯ = 6.0, both the median curves and dispersions of the synthetic response spectra 
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are in close agreement with the corresponding statistics of the four NGA-based prediction 

equations. The case of ܯ = 6.0 coincides with the lower boundary of our database, where few 

records are available and the model fit is not as good. In any case, this magnitude level is not of 

interest for design against “strong” ground motions, where nonlinear response-history analysis 

may be of interest. For all other magnitudes and for all distances (even magnitudes as high as 8.0, or distances as short as 10 km), the observed deviations are much smaller than the 

variabilities present in the prediction equations. Thus, we conclude that the method presented in 

this study for generating synthetic ground motions for given earthquake and site characteristics is 

viable and consistent with existing prediction equations for source-to-site distances ܴ ൒ 10 km 

and moment magnitudes greater than about ܯ = 6.5. 
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Fig. 6.1 Elastic 5% damped response of two horizontal components of the 1994 
Northridge earthquake recorded at the LA Wonderland Ave station and of 50 
synthetic motions: (a) pseudo-acceleration spectra, (b) displacement spectra. 
Motions correspond to ࡲ = ૚ (reverse faulting), ࡹ = ૟. ૟ૢ, ࡾ = ૛૙. ૜ km, and ࢂ = ૚૛૛૜ m/s. 

 

 

Fig. 6.2 Elastic 5% damped response of two horizontal components of the 1994 
Northridge earthquake recorded at the Sandberg – Bald Mtn station and of 50 
synthetic motions: (a) pseudo-acceleration spectra, (b) displacement spectra. 
Motions correspond to ࡲ = ૚ (reverse faulting), ࡹ = ૟. ૟ૢ, ࡾ = ૝૚. ૟ km, and ࢂ = ૡ૛૛ m/s. 
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Fig. 6.3 Elastic 5% damped response of two horizontal components of the 1983 Coalinga-
01 earthquake recorded at the Slack Canyon station and of 50 synthetic motions: 
(a) pseudo-acceleration spectra, (b) displacement spectra. Motions correspond to ࡲ = ૚ (reverse faulting), ࡹ = ૟. ૜૟, ࡾ = ૛ૠ. ૞ km, and ࢂ = ૟ૡ૞ m/s. 

 

 

Fig. 6.4 Elastic 5% damped response of two horizontal components of the 1989 Loma 
Prieta earthquake recorded at the San Jose – Santa Teresa Hills station and of 50 
synthetic motions: (a) pseudo-acceleration spectra, (b) displacement spectra. 
Motions correspond to ࡲ = ૚ (reverse faulting), ࡹ = ૟. ૢ૜, ࡾ = ૚૝. ૠ km, and ࢂ = ૟ૠ૛ m/s. 
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Fig. 6.5 Elastic 5% damped response of two horizontal components of the 1978 Tabas, 
Iran, earthquake recorded at the Dayhook station and of 50 synthetic motions: (a) 
pseudo-acceleration spectra, (b) displacement spectra. Motions correspond to ࡲ = ૚ (reverse faulting), ࡹ = ૠ. ૜૞, ࡾ = ૚૜. ૢ km, and ࢂ = ૟૟૙ m/s. 

 

 

Fig. 6.6 Elastic 5% damped response of two horizontal components of the 1999 Chi-Chi, 
Taiwan, earthquake recorded at the HWA038 station and of 50 synthetic 
motions: (a) pseudo-acceleration spectra, (b) displacement spectra. Motions 
correspond to ࡲ = ૚ (reverse faulting), ࡹ = ૠ. ૟૛, ࡾ = ૝૛. ૞ km, and ࢂ = ૟૝૜ 
m/s. 
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Fig. 6.7  Probabilistic nature of response spectrum. 

 

 

 

 

 

 

 

 

 

 

10
-1

10
0

10
1

-7

-6

-5

-4

-3

-2

-1

0

1

2

ln
(A

),
 A

is
 in

 u
ni

ts
 o

f 
g

T, s



 

141 

 

 

 

 

 

Fig. 6.8 Examining the stability of statistical measures for 10, 30, 100, and 500 
simulations. Each solid line represents the sample mean of logarithm of response 
spectra for ࡺ synthetic motions; dotted lines are their corresponding mean േ one 
logarithmic standard deviations. 
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Fig. 6.9 Median and median േ one logarithmic standard deviation of 5% damped pseudo 
acceleration response spectra for 500 synthetic motions and corresponding values 
predicted by the average of four NGA-based prediction models for ࡲ = ૙ (strike-
slip faulting), ࡹ = ૟. ૙, ࡾ = ૛૙ km, ࢂ = ૠ૟૙ m/s. Estimated NGA values are 
based on a rupture width of 20 km, depth to top of rupture of 1 km, ࢆ૛.૞ = ૚ km 
for Campbell-Bozorgnia, ࢆ૚.૙ = ૙. ૙૜૝ km for Abrahamson-Silva, and ࢆ૚.૙ =૙. ૙૛૝ km for Chiou-Youngs.  
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Fig. 6.10 Median and median േ one logarithmic standard deviation of 5% damped 
pseudo acceleration response spectra for 500 synthetic motions and 
corresponding values predicted by the average of four NGA-based prediction 
models for ࡲ = ૙ (strike-slip faulting), ࡹ = ૟. ૞, ࡾ = ૛૙ km, ࢂ = ૠ૟૙ m/s. 
Estimated NGA values are based on a rupture width of 20 km, depth to top of 
rupture of 1 km, ࢆ૛.૞ = ૚ km for Campbell-Bozorgnia, ࢆ૚.૙ = ૙. ૙૜૝ km for 
Abrahamson-Silva, and ࢆ૚.૙ = ૙. ૙૛૝ km for Chiou-Youngs.  
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Fig. 6.11 Median and median േ one logarithmic standard deviation of 5% damped 
pseudo acceleration response spectra for 500 synthetic motions and 
corresponding values predicted by the average of four NGA-based prediction 
models for ࡲ = ૙ (strike-slip faulting), ࡹ = ૠ. ૙, ࡾ = ૚૙ km, ࢂ = ૠ૟૙ m/s. 
Estimated NGA values are based on a rupture width of 20 km, depth to top of 
rupture of 1 km, ࢆ૛.૞ = ૚ km for Campbell-Bozorgnia, ࢆ૚.૙ = ૙. ૙૜૝ km for 
Abrahamson-Silva, and ࢆ૚.૙ = ૙. ૙૛૝ km for Chiou-Youngs. 
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Fig. 6.12 Median and median േ one logarithmic standard deviation of 5% damped 
pseudo acceleration response spectra for 500 synthetic motions and 
corresponding values predicted by the average of four NGA-based prediction 
models for ࡲ = ૙ (strike-slip faulting), ࡹ = ૠ. ૙, ࡾ = ૛૙ km, ࢂ = ૠ૟૙ m/s. 
Estimated NGA values are based on a rupture width of 20 km, depth to top of 
rupture of 1 km, ࢆ૛.૞ = ૚ km for Campbell-Bozorgnia, ࢆ૚.૙ = ૙. ૙૜૝ km for 
Abrahamson-Silva, and ࢆ૚.૙ = ૙. ૙૛૝ km for Chiou-Youngs. 
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Fig. 6.13 Median and median േ one logarithmic standard deviation of 5% damped 
pseudo acceleration response spectra for 500 synthetic motions and 
corresponding values predicted by the average of four NGA-based prediction 
models for ࡲ = ૙ (strike-slip faulting), ࡹ = ૠ. ૙, ࡾ = ૝૙ km, ࢂ = ૠ૟૙ m/s. 
Estimated NGA values are based on a rupture width of 20 km, depth to top of 
rupture of 1 km, ࢆ૛.૞ = ૚ km for Campbell-Bozorgnia, ࢆ૚.૙ = ૙. ૙૜૝ km for 
Abrahamson-Silva, and ࢆ૚.૙ = ૙. ૙૛૝ km for Chiou-Youngs. 
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Fig. 6.14 Median and median േ one logarithmic standard deviation of 5% damped 
pseudo acceleration response spectra for 500 synthetic motions and 
corresponding values predicted by the average of four NGA-based prediction 
models for ࡲ = ૙ (strike-slip faulting), ࡹ = ૠ. ૞, ࡾ = ૛૙ km, ࢂ = ૠ૟૙ m/s. 
Estimated NGA values are based on a rupture width of 20 km, depth to top of 
rupture of 1 km, ࢆ૛.૞ = ૚ km for Campbell-Bozorgnia, ࢆ૚.૙ = ૙. ૙૜૝ km for 
Abrahamson-Silva, and ࢆ૚.૙ = ૙. ૙૛૝ km for Chiou-Youngs. 
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Fig. 6.15 Median and median േ one logarithmic standard deviation of 5% damped 
pseudo acceleration response spectra for 500 synthetic motions and 
corresponding values predicted by the average of four NGA-based prediction 
models for ࡲ = ૙ (strike-slip faulting), ࡹ = ૡ. ૙, ࡾ = ૛૙ km, ࢂ = ૠ૟૙ m/s. 
Estimated NGA values are based on a rupture width of 20 km, depth to top of 
rupture of 1 km, ࢆ૛.૞ = ૚ km for Campbell-Bozorgnia, ࢆ૚.૙ = ૙. ૙૜૝ km for 
Abrahamson-Silva, and ࢆ૚.૙ = ૙. ૙૛૝ km for Chiou-Youngs. 
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7 Simulation of Two Orthogonal Horizontal 
Components 

7.1 INTRODUCTION 

In this chapter, the proposed method of ground motion simulation for specified earthquake and 

site characteristics is extended to simulate two orthogonal horizontal components of the ground 

motion. The most novel aspect of this extension is proper accounting of the correlations between 

parameters of the two components in the simulation model. Accounting for these correlations is 

essential in order to obtain synthetic ground motion components that are realistic. Representation 

of realistic ground motion components is especially important when analyzing asymmetric 

structures that are vulnerable to torsion.  

As shown in this chapter, the correlations mentioned above can be very high. This is 

expected, since the ground motion components are generated from the same earthquake source 

and seismic waves that travel through the same medium. Some previous studies assume that the 

parameters of the two components are identical. For example, Yeh and Wen (1989) assume 

identical frequency content for the component of ground motion along any horizontal direction. 

In the context of the method developed in this study, this assumption implies identical filter 

parameters for all directions of the ground motion. The same study uses distinct deterministic 

intensity envelopes, equivalent of our time modulating functions, for the different components, 

the parameters of which are identified from recorded accelerograms. Other studies that simulate 

ground motion components, such as Kubo and Penzien (1979) or Heredia-Zavoni and Machicao-

Barrionuevo (2004), also use real recorded accelerograms to identify the parameters of their 

ground motion model, and thereby indirectly account for the correlations between parameters of 

the ground motion components in the simulation. The present study allows simulation of bi-

directional ground motion time-histories for a future seismic event without any need for 

previously recorded motions. This is possible because predictive equations are developed for the 
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model parameters in terms of earthquake and site characteristics, and the correlations between 

the parameters of the ground motion components are empirically determined.  

It should be noted that most seismological source-based models are capable of simulating 

multi-directional ground motions at a specific location without any need for previously recorded 

accelerograms. However, as discussed in previous chapters, these models are computationally 

intensive and require a thorough knowledge of seismic sources in the area, information that is 

usually not available to the practicing engineer. 

This chapter starts by presenting an extension of the stochastic ground motion model for 

two components. Two stochastic processes are considered, each representing one ground motion 

component. Differences between the two stochastic processes originate from different underlying 

white-noise processes that excite the filter and different model parameters, i.e., Arias intensity, 

effective duration, filter frequency, etc. Ground motion components with a source-to-site 

distance of at least 10 km are simulated along the principal axes where the white-noise processes 

are statistically independent. A new database of recorded ground motion components is 

developed by rotating the as-recorded components into their principal axes. Based on this 

database, empirical predictive equations for the model parameters are constructed and 

correlations between parameters of the two components are empirically determined. The 

outcomes allow one to randomly generate correlated model parameters for two orthogonal 

horizontal ground motion components along the principal axes. The simulated components can 

then be rotated back into any desired direction, e.g., principal directions of the structure, through 

a simple transformation. Example simulations are provided at the end of the chapter. 

7.2 STOCHASTIC GROUND MOTION MODEL 

Following Chapter 2, orthogonal horizontal ground motion components are modeled by the fully 

nonstationary stochastic processes: 

(ݐ)ଵݔ  = ,ݐ)ݍ હ૚) ቊ (ݐ)௙ଵߪ1 න ݐ]݄ − ߬, ૃ૚(߬)௧
ିஶ  ଵ(߬)d߬ቋ (7.1)ݓ[

(ݐ)ଶݔ  = ,ݐ)ݍ હ૛) ቊ (ݐ)௙ଶߪ1 න ݐ]݄ − ߬, ૃ૛(߬)௧
ିஶ  ଶ(߬)d߬ቋ (7.2)ݓ[
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where ݔଵ(ݐ) and ݔଶ(ݐ), respectively, denote acceleration time-histories, prior to high-pass 

filtering, of components 1 and 2 of the ground motion. The time-modulating function and the 

linear filter employed in this chapter are identical to those used in the ground motion model of 

Chapter 4. Similarly, the model parameters are based on definitions given in Chapter 4, i.e., હ૚ = , ҧܽ1ܫ) , 951−5ܦ and ૃ૚ (1݀݅݉ݐ = (߱݉݅݀1 , ߱1Ԣ  ,  represent the modulating function (1݂ߞ

parameters and filter parameters of component 1, and હ૛ = , ҧܽ2ܫ) , 952−5ܦ and ૃ૛ (2݀݅݉ݐ =(߱݉݅݀2 , ߱2Ԣ  ,  represent the corresponding parameters of component 2. The differences (2݂ߞ

between the acceleration time-histories in (7.1) and (7.2) originate from two sources: (1) 

different model parameters, (હ૚, ૃ૚) and (હ૛, ૃ૛), (2) different input excitations, i.e., white-

noise processes, ݓଵ(߬) and ݓଶ(߬). Whereas the model parameters (હ૚, ૃ૚) and (હ૛, ૃ૛) 

characterize the evolutionary intensity and frequency contents of the two components, the white-

noise processes ݓଵ(߬) and ݓଶ(߬) describe the stochastic nature of the ground motion 

components. 

When simulating bi-directional ground motions, in addition to differences, similarities 

and dependencies between the two components must be accounted for. Since the ground motion 

components are generated from the same earthquake source and seismic waves that travel 

through the same medium, high correlations between model parameters of the two components 

are expected. The correlation matrix, ૉ(હ૚,ૃ૚),(હ૛,ૃ૛), may be estimated empirically by analyzing a 

large number of recorded ground motion pairs. Furthermore, dependence between ݓଵ(߬) and ݓଶ(߬) must be incorporated in the simulation. In general, ground motion components are 

correlated processes. However, as shown by Penzien and Watabe (1975), along a unique set of 

orthogonal axes, referred to as principal axes, the translational components of ground motion 

may be considered uncorrelated. Therefore, we assume that ݓଵ(߬) and ݓଶ(߬) are statistically 

independent, provided that ݔଵ(ݐ) and ݔଶ(ݐ) are in the directions of principal axes. 

In the subsequent sections, a new database of ground motion components is developed by 

rotating the ground motion pairs of the database used in Chapter 4 into their principal axes. The 

empirical predictive equations developed in Chapter 4 are no longer appropriate, as they do not 

correspond to the directions of principal axes. Therefore, model parameters are identified for the 

new database, empirical predictive equations are developed, and correlation coefficients between 

model parameters of the ground motion components are estimated. 
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7.3 DATABASE OF PRINCIPAL GROUND MOTION COMPONENTS 

The strong motion database introduced in Chapter 4 contains ground motion recordings with 

orthogonal horizontal pairs, directions of which depend on the orientation of the recording 

instruments. We refer to this database as the as-recorded database. Recall that the as-recorded 

database contains 103 pairs of horizontal recordings. Each pair is rotated into directions along 

which the components are statistically uncorrelated, i.e., the principal axes directions. The result 

is a new strong motion database, which is employed in the subsequent statistical analysis. More 

details on the principal axes and rotation of ground motion components are presented below. 

7.3.1 Principal Axes of Ground Motion 

Earthquake ground motions are multi-dimensional. Neglecting the rotational components, a set 

of principal axes are defined by Penzien and Watabe (1975) for the three translational 

components of ground motion. These include the major, intermediate, and minor principal axes 

along which the components of ground motion are uncorrelated and have intensities in 

decreasing order. Furthermore, based on examination of real accelerograms, it is shown in the 

same study that the major principal axis usually points in the general direction of the epicenter, 

the intermediate principal axis is horizontal and perpendicular to the major principal axis, and the 

minor principal axis is almost vertical. Figure 7.1a demonstrates this configuration where ܽ௠௔௝௢௥(ݐ), ܽ௜௡௧௘௥௠௘ௗ௜௔௧௘(ݐ), and ܽ௩௘௥௧௜௖௔௟(ݐ) are acceleration time-histories along the major, 

intermediate, and minor principal axes. Subsequent studies on stochastic modeling and 

generation of synthetic ground motion components have based their studies on the definition of 

principal axes by Penzien and Watabe (1975). Examples include Kubo and Penzien (1979), 

Smeby and Der Kiureghian (1985), Yeh and Wen (1989), and Heredia-Zavoni and Machicao-

Barrionuevo (2004). We also take advantage of the above definition to simulate the major and 

intermediate ground motion components.  

Let ܽଵ(ݐ) and ܽଶ(ݐ) represent a set of orthogonal horizontal components of ground 

acceleration. The correlation coefficient between these two components over the time interval ߬ଵ ൑ ݐ ൑ ߬ଶ is calculated by  
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௔భ(௧), ௔మ(௧)ߩ  = ׬ ܽଵ(ݐ)ܽଶ(ݐ)dݐఛమఛభට׬ ܽଵ(ݐ)ଶdݐఛమఛభ ׬ ܽଶ(ݐ)ଶdݐఛమఛభ
 (7.3) 

In general, the correlation coefficient is time dependent and fluctuates over successive time 

intervals. However, Penzien and Watabe (1975) found that ߩ௔భ(௧), ௔మ(௧) remains reasonably stable 

for different time intervals of recorded ground motions. Therefore, we define ߩ௔భ(௧), ௔మ(௧) for the 

entire duration of the ground motion, i.e., we use ߬ଵ = 0 and ߬ଶ =  ௡ representsݐ ௡. (Recall thatݐ

the total duration of the motion). This correlation coefficient varies if the ground motion 

components are rotated by an angle ߠ to an alternative set of orthogonal axes (see Fig. 7.1b). 

Therefore, it is a function of the rotation angle, (ߠ)(ݐ)2ܽ ,(ݐ)1ܽߩ. The principal axes of the ground 

motion are the directions along which (ߠ)(ݐ)2ܽ ,(ݐ)1ܽߩ = 0, and the principal components are 

components of ground motion along these axes.  

In addition to the rotation angle, ߩ௔భ(௧), ௔మ(௧)(ߠ) is a function of the difference between 

the intensities of the principal components. This dependence, which was pointed out by Smeby 

and Der Kiureghian (1985), is also verified in this study. Specifically, the larger the difference 

between the intensities of the principal components, the higher the correlation coefficient for a 

given ߠ. In the extreme case, where the principal components have equal intensities, the 

correlation coefficient is zero for all rotation angles. 

In this study, Arias intensity, defined by (4.3), is used to distinguish the major component 

from the intermediate component. The major component is defined as the principal horizontal 

component with the larger Arias intensity. Consequently, the intermediate component is defined 

as the principal horizontal component with the smaller Arias intensity. This definition is used to 

sort the data when estimating the correlation coefficients between model parameters of the major 

and intermediate components, as well as in the simulation algorithm.  

7.3.2 Rotation of Ground Motion Components 

Let ܽଵ(ݐ) and ܽଶ(ݐ) represent a pair of orthogonal horizontal acceleration time-histories in the 

as-recorded directions, and ܽଵ,ఏ(ݐ) and ܽଶ,ఏ(ݐ) represent their counterclockwise rotation by angle ߠ. This orthogonal transformation is illustrated in Figure 7.1b and is obtained by 
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 ൤ܽଵ,ఏ(ݐ)ܽଶ,ఏ(ݐ)൨ = ൤cos(ߠ) −sin(ߠ)sin(ߠ) cos(ߠ) ൨ ൤ܽଵ(ݐ)ܽଶ(ݐ)൨ (7.4) 

Every pair of as-recorded ground motion components in the database are rotated according to 

(7.4) for rotation angles ranging from 0° to 90° with a discretization of 1°. The correlation 

coefficient is calculated according to (7.3) and the rotation angle, ߠ෠, is selected such that ߩ௔భ,ഇ෡ (௧),௔మ,ഇ෡ (௧)(ߠ෠) = 0. The corresponding rotated components, ܽଵ,ఏ෡ and ܽଶ,ఏ෡ (ݐ)  are then used ,(ݐ)

to develop the database of principal ground motion components. Table 7.1 provides the 

correlation coefficient between as-recorded components, ߩ௔భ(௧),௔మ(௧), and the selected rotation 

angle, ߠ෠, for all the records in the database.  

The components of two as-recorded ground motions, (a) the Northridge earthquake 

recorded at Mt Wilson – CIT Station and (b) the Chi-Chi, Taiwan, earthquake recorded at HW 

A046 Station, are plotted in Figure 7.2. Each pair is rotated according to (7.4) and correlations 

between their two components are plotted against the rotation angle in Figure 7.3. Figure 7.4 

plots the corresponding principal components of these two pairs of ground motions. Observe in 

Figure 7.3 that the correlation coefficient as a function of the rotation angle is a smooth curve 

and represents half of a complete cycle between 0° to 90°. Furthermore, the dependence of the 

correlation coefficient on the difference between the intensities of the principal components is 

apparent in this figure. The ratio between the Arias intensities of the principal components for 

the Northridge record is 0.38, while the same measure for the Chi-Chi earthquake is 0.82. As 

expected, a higher ratio, which implies a smaller difference between the intensities of principal 

components, has resulted in lower overall correlations. 

7.4 EMPIRICAL PREDICTIVE EQUATIONS FOR THE MODEL PARAMETERS 

Sample observations of the model parameters are obtained by fitting the stochastic ground 

motion model in (7.1) and (7.2) to the database of principal ground motion components. This is 

done according to the methods described in Chapter 4 by fitting to the time-varying intensity and 

evolutionary frequency content of each component. Recall that the physically based modulating 

function parameters, Arias intensity, ܫ ҧ௔, effective duration, ܦହିଽହ, and time at the middle of 

strong shaking, ݐ௠௜ௗ, are identified directly from the recorded accelerogram based on their 

definitions. The identified modulating function parameters for all the rotated records in the 
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database are presented in Table 7.2. Figure 7.5 demonstrates the adequacy of this parameter 

identification method. In this figure three example pairs of components are shown that are 

typical of the entire database. Given the identified model parameters from Table 7.2, the 

modulating function parameters (ߙଵ, ,ଶߙ  ଷ) are calculated and the resulting modulatingߙ

functions are superimposed on the recorded acceleration time-histories. Observe that for a typical 

motion, as exemplified in the top and middle plots in Figure 7.5, whether ଴ܶ = 0 or ଴ܶ ൐ 0, the 

fitted modulating function is in general a good representation of the evolving energy in the 

record. Also observe that for the few cases in which the target accelerogram behaves irregularly, 

as in the bottom plots, the fitted modulating function provides a reasonable representation of the 

evolving energy.  

Recall that the filter parameters, which include the filter frequency at the middle of strong 

shaking, ߱௠௜ௗ, the rate of change of frequency with time, ߱Ԣ, and the filter damping ratio, ߞ௙, are 

identified by fitting to the mean zero-level up-crossing rate and the rate of change of the 

cumulative number of negative maxima and positive minima of the target accelerogram. 

Simplified procedures that were presented in Chapter 4 are employed. The identified filter 

parameters for all the principal components in the database are presented in Table 7.3. The error 

measures, ߳ఠ and ߳఍, which are calculated based on definitions in Chapter 3, are listed in Table 

7.4. These error measures are calculated only for the time intervals, over which fitting is 

performed, i.e., the time between 1% to 99% levels of Arias intensity for the frequency 

parameters, and the time between 5% to 95% levels of Arias intensity for the damping ratio (see 

Chapter 4 for details on the method of fitting). Observe that, in general, error measurements are 

remarkably small, verifying the adequacy of the simplified methods for identification of filter 

parameters. For damping ratios smaller than 0.1, a few cases exhibit rather large values for ߳఍. 

This is due to the definition we have chosen for the error measure. Referring to Figure 4.4, ߳఍ is 

defined as the ratio of the area between the target and simulated curves divided by the area 

underneath the target curve. As a result, when the damping ratio is small, the area underneath the 

target curve is small, thereby producing a large value of ߳఍ for a constant difference between the 

target and simulated curves.    

Summary statistics of the identified model parameters for the new database are presented 

in Table 7.5. The data for the Arias intensity are divided into two groups: Arias intensity for the 
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major principal component, ܫ௔,௠௔௝௢௥, and Arias intensity for the intermediate principal 

component, ܫ௔,௜௡௧௘௥. This division reduces the number of data points for statistical analysis from 

206 to 103 for each parameter, but this is necessary for simulation of pairs of ground motion 

components. The statistical analysis for the remainder of model parameters is performed for the 

entire data set, i.e., data corresponding to both components are combined resulting in 206 data 

points for each model parameter. Comparing the statistics provided in Table 7.5 to those of Table 

4.3 reveals similar behavior of model parameters corresponding to principal motions and model 

parameters corresponding to as-recorded motions.  

Probability distributions are assigned to the model parameters in the manner described in 

Chapter 4. Distribution types and their assigned boundaries are presented in Table 7.6. Compared 

to the as-recorded database, the lower boundary of the beta distribution assigned to ܦହିଽହ has 

dropped from 5 s to 4 s, and the upper boundary of beta distribution assigned to ݐ௠௜ௗ has 

decreased from 40 s to 35 s. These are insignificant differences. Figures 7.6 and 7.7 show the 

assigned marginal probability density functions (PDFs) superimposed on the normalized 

frequency diagrams of the model parameters. In these figures, the fitted PDFs corresponding to 

the as-recorded database are also plotted for comparison. Again, differences are not significant. 

Figures 7.8 and 7.9 show the fit of the cumulative distribution functions (CDFs) for the assigned 

distributions to the empirical CDFs of the identified model parameters. It is observed that the fit 

is good for all the model parameters, confirming the appropriateness of the assigned 

distributions. 

7.4.1 Regression 

Regression analysis is performed according to the methods described in Chapter 4 to develop 

predictive equations for the model parameters in terms of earthquake and site characteristics, ܨ, ,ܯ ܴ, and ܸ. The resulting predictive equations for ߥଵ,௠௔௝௢௥ = ln(ܫ ҧ௔,௠௔௝௢௥) and ߥଵ,௜௡௧௘௥ =ln(ܫ ҧ௔,௜௡௧௘௥) are similar to (4.19). The resulting predictive equations for the remainder of model 

parameters after transformation to the standard normal space are similar to (4.20). The maximum 

likelihood estimates of regression coefficients and variance components are presented in Table 

7.7. For each predictive equation, a standard significance test on the linear regression formula is 

performed, i.e., an F-test with null hypothesis that ߚ௜,ଵ = ௜,ଶߚ = ௜,ଷߚ = ௜,ସߚ = 0, for ݅ =
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1௠௔௝௢௥, 1௜௡௧௘௥, 2, … ,6. The P-values are reported in Table 7.7. The regression coefficients ߚ௜,ଵ, ,௜,ଶߚ ݅) ௜,ସߚ ௜,ଷ, andߚ = 1, … ,6) were individually tested (ߚ௜,଴ was skipped because inclusion 

of a constant term in the regression formulation was not questioned), i.e., the t-test with null 

hypothesis that ߚ௜,௝ = 0, ݅ = 1, … ,6, ݆ = 1, … ,4. Those coefficients with statistical significance at 

the 95% confidence level are shown in bold in Table 7.7. Furthermore, 95% confidence intervals 

are presented in Table 7.8. If a confidence interval contains zero, then the corresponding 

regression coefficient is not significant at the given confidence level. The results are consistent 

with Table 7.7. Table 7.9 presents the P-values for each t-test. Regardless of the significance 

level, as done in Chapter 5, all the coefficients in Table 7.7 are used in the simulation. 

Comparisons of Tables 7.7, 7.8, and 7.9 respectively with Tables 4.5, 4.6, and 4.7 reveal 

insignificant differences. Therefore, we conclude that the model validations against recorded 

motions and against NGA relations in Chapter 6 still hold. 

7.4.2 Correlation Analysis 

Perhaps the most important result of this chapter is obtaining the correlation matrix between the 

model parameters of the major and intermediate principal components. This correlation matrix is 

presented in Table 7.10. Similar to Chapter 4, correlation coefficients between two model 

parameters are estimated as the sample correlation coefficients between their corresponding total 

residuals. Observe that the off-diagonal block, which represents correlations between the 

transformed model parameters of the major and intermediate components, contains high 

numbers. Namely, correlation coefficients between pairs of similar model parameters of the two 

components are 0.92 for ߥଵ (corresponding to Arias intensities), 0.89 for ߥଶ (corresponding to 

the effective durations), 0.96 for ߥଷ (corresponding to ݐ௠௜ௗ values), 0.94 for ߥସ (corresponding 

to ߱௠௜ௗ values), 0.52 for ߥହ (corresponding to ߱Ԣ values), and 0.75 for ߥ଺ (corresponding to ߞ௙ 

values). High correlations are also observed between different model parameters of the two 

components. For example, a correlation of 0.68 is observed between ߥଷ (corresponding to ݐ௠௜ௗ) 

of the intermediate component and ߥଶ (corresponding to the effective duration) of the major 

component. These high correlations should not be neglected in simulation of ground motion 

components. 
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The diagonal blocks in Table 7.10 represent correlation coefficients between model 

parameters of the individual components. Observe that the two diagonal blocks are not 

significantly different from each other and from the correlation coefficients for one component 

simulation listed in Table 4.9. 

7.5 SIMULATION AND EXAMPLES 

For specified earthquake and site characteristics, ܨ, ,ܯ ܴ, and ܸ, 12 model parameters (6 for each 

component) are randomly simulated according to the methods described in Chapter 5, which 

accounts for the correlations between the parameters. Since by definition the Arias intensity of 

the major component must be greater than the Arias intensity of the intermediate component, the 

simulation of the parameters must satisfy this condition. Because predictive equations have been 

developed for sorted Arias intensities of the two principal components, the probability that ܫ ҧ௔,௠௔௝௢௥ ൐ ܫ ҧ௔,௜௡௧௘௥ is high. A simple way to observe the required relationship is to simply discard 

the small subset of simulations with ܫ ҧ௔,௠௔௝௢௥ ൏ ܫ ҧ௔,௜௡௧௘௥. This essentially conditions the joint 

probability distribution of the model parameters on the event ܫ ҧ௔,௠௔௝௢௥ ൐ ܫ ҧ௔,௜௡௧௘௥. The simulated 

model parameters are then used in (7.1) and (7.2) with statistically uncorrelated white-noise 

processes, ݓଵ(߬) and ݓଶ(߬), to generate a synthetic pair of ground accelerations in the directions 

of principal axes. High-pass filtering according to (2.28) is then performed on the simulated 

motions.  

As an example, Figure 7.10 shows pairs of acceleration time-histories of the major and 

intermediate components for one recorded and three simulated ground motions. Figures 7.11 and 

7.12 show the corresponding velocity and displacement time-histories. The simulated motions 

are generated for the earthquake and site characteristics of the recorded motion. Observe that, for 

each pair, simulated components are different but have similar overall characteristics in the same 

manner as the recorded pair of motions. These similarities are more apparent by looking at the 

model parameters, which are provided in the figure for each component of the recorded and 

simulated ground motion.  

The method of ground motion simulation presented in this chapter allows generation of 

synthetic horizontal ground motion components in the principal directions without any need for 

previously recorded motions. It requires information only on the earthquake and site 
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characteristic values ܨ, ,ܯ ܴ, and ܸ. The two synthetic components may then be rotated to any 

desired direction according to the orthogonal transformation in (7.4). As mentioned earlier, 

according to Penzien and Watabe (1975), the principal axes are usually directed towards the 

general direction of the earthquake source and the corresponding perpendicular direction. This 

allows placement of the synthetic principal components when the location of the potential 

earthquake source is known. The two synthetic principal components may then be rotated into 

the input directions of the structure, e.g., the longitudinal and transverse directions of the 

structure. If the earthquake source is unknown, one may wish to consider a variety of directions 

to obtain the maximum structural response. If the analysis is linear, the critical directions for 

each response quantity can be obtained in closed form (see Smeby and Der Kiureghian [1985]). 

However, for nonlinear analysis, this angle must be determined by trial. In fact, in the current 

practice, ground motion components are often rotated to alternative axes in order to obtain the 

maximum structural response. 
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Table 7.1 Database of principal ground motion components. For each pair of records, the 
correlation between the two as-recorded horizontal components and the rotation 
angle for principal axes are listed. Order of records is similar to Table 4.2. 

Record ID 

in NGA 

Database 

Correlation Between 

As-Recorded Components 

ߠ when ߩ ) = 0° ) 

Rotation Angle for 

Principal Axes (degrees): ߠ෠ 

Strike-Slip 

164 −0.147 54 

265 −0.034 3 

454 0.042 61 

455 −0.023 79 

471 0.187 74 

472 −0.145 46 

476 0.032 1 

891 0.104 55 

897 0.023 77 

922 0.038 8 

925 −0.226 12 

928 0.022 13 

934 0.240 27 

938 −0.203 50 

1109 0.078 59 

1112 −0.087 11 

1154 −0.122 54 

1169 0.110 41 

1619 0.307 72 

1626 0.072 16 

1633 −0.182 72 

1763 0.002 90 

1767 0.131 36 

1786 0.171 41 

1787 −0.262 74 
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Table 7.1—Continued. 

Record ID 

in NGA 

Database 

Correlation Between 

As-Recorded Components 

ߠ when ߩ ) = 0° ) 

Rotation Angle for 

Principal Axes (degrees): ߠ෠ 

 

Strike-Slip 

1795 −0.084 71 

1824 −0.178 53 

1832 −0.005 1 

1836 0.038 74 

2107 −0.052 73 

2111 −0.044 83 

Reverse 

59 0.066 83 

63 0.466 36 

71 −0.116 27 

72 0.350 52 

73 −0.136 19 

87 −0.374 48 

89 0.018 89 

139 0.060 56 

369 −0.005 1 

511 −0.104 28 

512 0.084 49 

528 −0.194 47 

536 −0.161 23 

537 0.455 59 

541 −0.143 70 

769 0.306 21 

771 0.057 84 

781 −0.029 88 

782 0.160 68 

788 −0.403 47 

789 0.068 11 

791 0.145 34 
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Table 7.1—Continued. 

Record ID 

in NGA 

Database 

Correlation Between 

As-Recorded Components 

ߠ when ߩ ) = 0° ) 

Rotation Angle for 

Principal Axes (degrees): ߠ෠ 

 

 

 

 

 

 

Reverse 

795 −0.454 36 

797 0.188 31 

801 0.053 79 

804 −0.071 82 

809 0.213 17 

810 −0.377 35 

813 0.303 15 

943 −0.133 6 

946 0.162 49 

957 0.051 7 

989 0.019 19 

994 0.118 85 

1011 0.165 22 

1012 0.229 40 

1020 −0.210 65 

1021 −0.030 64 

1023 −0.556 50 

1027 0.417 54 

1029 0.087 74 

1033 0.357 50 

1041 −0.422 35 

1060 −0.127 9 

1074 0.313 60 

1078 0.382 47 

1091 0.003 89 

1096 −0.184 19 

1206 −0.042 3 
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Table 7.1—Continued. 

Record ID 

in NGA 

Database 

Correlation Between 

As-Recorded Components 

ߠ when ߩ ) = 0° ) 

Rotation Angle for 

Principal Axes (degrees): ߠ෠ 

 

 

 

 

 

 

Reverse 

1234 0.363 18 

1245 0.014 72 

1257 0.286 77 

1273 0.000 90 

1278 −0.149 27 

1287 0.039 7 

1293 −0.091 34 

1302 0.413 27 

1325 0.122 25 

1347 −0.171 32 

1350 0.088 22 

1377 −0.116 62 

1391 0.105 48 

1485 −0.355 38 

1517 0.095 87 

1518 −0.117 15 

1520 −0.168 53 

1548 −0.132 68 

1576 0.011 87 

1577 0.062 79 

1585 −0.015 77 

1587 −0.090 11 

1594 −0.224 58 

 

 

 

 



 

164 

 

Table 7.2 Identified modulating function parameters for the principal ground motion 
components. For records with ࢀ૙ ൐ ૙, ࢊ࢏࢓࢚ is the time starting from ࢀ૙. 

 

Record ID 
in NGA 
Database 

 

௠௜ௗݐ ହିଽହ (s)ܦ ௔ (s.g.)ܫ (s) 

Major 
Component 

Intermediate 
Component 

Major 
Component 

Intermediate 
Component 

Major 
Component 

Intermediate 
Component 

Strike-Slip 

164 0.1506 0.1105 34.41 32.60 17.17 14.60 
265 0.2007 0.1022 8.57 7.57 5.47 5.72 
454 0.0059 0.0054 8.44 8.72 3.61 3.66 
455 0.0061 0.0054 8.89 9.56 4.13 4.35 
471 0.0195 0.0095 17.68 20.79 9.05 9.20 
472 0.0119 0.0089 22.14 19.38 10.41 11.45 
476 0.0082 0.0025 7.59 7.81 3.85 3.79 
891 0.0081 0.0065 29.18 32.10 15.90 18.44 
897 0.0120 0.0107 30.84 30.82 17.18 16.64 
922 0.0023 0.0018 27.89 25.18 20.12 19.72 
925 0.0066 0.0023 22.57 26.58 14.60 15.91 
928 0.0565 0.0509 18.51 16.89 14.91 14.13 
934 0.0084 0.0046 13.28 14.32 8.30 8.72 
938 0.0098 0.0064 13.56 15.48 12.02 11.60 

1109 0.0073 0.0061 20.04 25.50 14.23 15.18 
1112 0.0096 0.0060 13.04 22.78 14.13 17.04 
1154 0.0084 0.0065 33.70 34.49 17.52 18.19 
1169 0.0032 0.0025 33.50 39.06 17.13 19.04 
1619 0.0221 0.0079 15.34 16.45 5.06 7.12 
1626 0.0165 0.0126 24.52 28.51 9.14 9.95 
1633 0.8090 0.4345 30.50 28.52 10.96 10.84 
1763 0.0022 0.0016 19.57 23.44 18.54 15.98 
1767 0.0010 0.0008 27.46 25.50 20.07 19.15 
1786 0.0165 0.0116 15.88 16.97 17.70 16.13 
1787 0.1998 0.0751 9.71 12.55 8.28 7.15 
1795 0.0109 0.0083 15.43 17.15 15.94 15.29 
1824 0.0027 0.0019 14.87 14.18 7.37 4.99 
1832 0.0066 0.0052 20.54 18.91 18.97 19.43 
1836 0.0072 0.0062 17.38 18.22 8.30 9.44 
2107 0.0185 0.0154 19.44 24.82 14.09 14.65 
2111 0.0115 0.0079 18.99 23.38 17.06 13.45 

Reverse 
59 0.0005 0.0003 10.41 10.13 3.18 3.44 
63 0.0079 0.0027 12.07 15.06 1.43 2.31 
71 0.0498 0.0374 5.12 6.22 1.05 0.93 
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Table 7.2—Continued. 
 

Record ID 
in NGA 
Database 

 

௠௜ௗݐ ହିଽହ (s)ܦ ௔ (s.g.)ܫ (s) 

Major 
Component 

Intermediate 
Component 

Major 
Component 

Intermediate 
Component 

Major 
Component 

Intermediate 
Component 

Reverse 

72 0.0316 0.0148 11.85 13.67 3.82 3.92 
73 0.0160 0.0103 9.47 11.58 1.70 1.85 
87 0.0410 0.0186 10.77 13.04 3.95 4.35 
89 0.0017 0.0004 8.79 9.50 1.25 1.96 

139 0.1509 0.1326 12.36 11.76 6.29 6.98 
369 0.0291 0.0233 9.15 11.61 6.74 7.47 
511 0.0091 0.0071 6.41 6.50 2.16 1.62 
512 0.0065 0.0055 5.00 10.28 6.82 7.57 
528 0.0025 0.0017 7.31 9.77 6.44 7.30 
536 0.0068 0.0043 7.97 8.36 6.64 6.06 
537 0.0117 0.0039 6.25 8.50 3.36 3.91 
541 0.0048 0.0031 8.66 9.43 3.72 4.27 
769 0.0488 0.0190 12.09 13.59 4.70 5.30 
771 0.0495 0.0277 5.90 7.37 10.01 9.98 
781 0.0107 0.0048 12.86 13.10 8.77 9.67 
782 0.0087 0.0054 12.79 13.84 9.52 8.92 
788 0.0070 0.0030 10.52 12.11 8.52 9.74 
789 0.0091 0.0063 8.15 9.73 8.38 9.90 
791 0.0106 0.0077 16.30 17.53 7.23 7.59 
795 0.0068 0.0024 8.43 11.52 9.67 10.57 
797 0.0074 0.0049 10.69 15.37 10.08 11.48 
801 0.1345 0.1008 10.18 9.58 7.81 7.78 
804 0.0080 0.0048 9.52 11.93 8.69 9.13 
809 0.1691 0.0794 8.41 9.26 6.50 7.44 
810 0.3344 0.1446 9.68 9.14 6.70 7.15 
813 0.0044 0.0014 7.98 18.40 9.42 11.24 
943 0.0076 0.0021 12.20 13.98 12.16 12.11 
946 0.0035 0.0025 13.78 15.18 9.14 9.10 
957 0.0337 0.0219 7.96 11.71 5.13 5.43 
989 0.0664 0.0623 6.79 9.21 8.12 7.19 
994 0.1555 0.0409 8.89 11.95 7.16 7.71 

1011 0.0216 0.0134 6.68 8.86 4.85 5.88 
1012 0.1287 0.0802 7.64 8.44 7.05 7.63 
1020 0.0517 0.0299 8.97 11.14 7.05 7.63 
1021 0.0082 0.0076 13.14 13.64 8.42 7.98 
1023 0.0341 0.0096 6.52 12.36 5.61 6.98 
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Table 7.2—Continued. 
 

Record ID 
in NGA 
Database 

 

௠௜ௗݐ ହିଽହ (s)ܦ ௔ (s.g.)ܫ (s) 

Major 
Component 

Intermediate 
Component 

Major 
Component 

Intermediate 
Component 

Major 
Component 

Intermediate 
Component 

 
 
 
 
 
 
 
 

Reverse 

1027 0.0106 0.0042 11.68 13.12 8.30 8.88 
1029 0.0106 0.0077 12.84 13.36 8.52 8.50 
1033 0.0086 0.0040 11.88 19.79 8.79 12.24 
1041 0.0388 0.0149 8.70 11.82 9.95 9.82 
1060 0.0104 0.0048 15.32 16.12 17.54 18.12 
1074 0.0174 0.0083 13.54 17.41 10.58 10.55 
1078 0.1223 0.0545 6.57 9.78 4.77 6.50 
1091 0.0381 0.0325 8.28 7.34 6.94 6.16 
1096 0.0059 0.0032 11.66 18.42 16.77 15.71 
1206 0.0323 0.0148 30.63 37.29 18.18 20.28 
1234 0.1107 0.0318 26.30 31.24 14.62 18.42 
1245 0.0081 0.0078 35.93 36.11 24.18 24.09 
1257 0.0264 0.0073 14.13 27.05 21.83 28.72 
1273 0.0026 0.0021 35.12 34.19 25.63 27.31 
1278 0.0236 0.0163 19.52 23.81 15.16 19.23 
1287 0.0080 0.0058 32.07 32.23 24.21 27.75 
1293 0.0165 0.0135 16.70 17.01 18.26 17.82 
1302 0.0185 0.0064 19.70 18.86 22.74 20.96 
1325 0.0107 0.0078 19.64 21.19 22.99 24.04 
1347 0.0094 0.0064 21.28 25.58 23.31 21.73 
1350 0.0757 0.0586 16.90 18.05 13.57 12.78 
1377 0.0070 0.0053 37.67 33.88 26.09 22.68 
1391 0.0022 0.0018 41.53 35.92 31.13 33.59 
1485 0.1788 0.0834 9.45 12.53 21.17 21.80 
1517 2.0744 0.3897 14.69 23.19 16.03 21.66 
1518 0.0084 0.0053 19.78 22.36 16.43 21.20 
1520 0.3125 0.2198 8.81 10.52 8.77 8.74 
1548 0.0881 0.0601 20.98 19.02 18.34 19.98 
1576 0.0032 0.0027 37.12 38.86 29.01 29.04 
1577 0.0072 0.0051 36.18 34.48 27.95 26.00 
1585 0.0026 0.0025 35.04 34.14 28.01 29.25 
1587 0.0099 0.0061 34.33 34.24 24.93 26.25 
1594 0.0061 0.0037 36.87 36.19 26.70 26.54 
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Table 7.3  Identified filter parameters for the principal ground motion components. 

 
Record ID 
in NGA 
Database 

 
 

߱௠௜ௗ ⁄ߨ2  (Hz) ߱′ ⁄ߨ2  (Hz/s) ߞ௙ (ratio) 

Major 
Component 

Intermediate 
Component 

Major 
Component 

Intermediate 
Component 

Major 
Component 

Intermediate 
Component 

Strike-Slip 

164 4.00 5.61 −0.063 −0.070 0.37 0.31 
265 5.09 6.18 −0.383 −0.211 0.61 0.71 
454 8.40 7.60 −0.232 −0.212 0.06 0.11 
455 8.00 8.67 −0.409 −0.351 0.12 0.10 
471 3.44 4.07 −0.146 −0.163 0.05 0.09 
472 3.59 3.56 −0.222 −0.188 0.06 0.08 
476 3.91 5.30 0.069 −0.176 0.07 0.05 
891 7.97 7.72 −0.082 −0.154 0.39 0.44 
897 8.81 9.55 −0.084 −0.133 0.30 0.40 
922 5.87 5.16 −0.089 −0.082 0.24 0.31 
925 4.37 5.19 0.003 −0.037 0.18 0.28 
928 11.58 13.61 0.071 −0.055 0.26 0.22 
934 8.58 8.80 −0.010 −0.090 0.32 0.44 
938 11.40 11.29 −0.050 −0.036 0.21 0.17 

1109 2.39 3.14 −0.002 −0.058 0.24 0.22 
1112 3.64 3.91 −0.021 −0.039 0.15 0.21 
1154 1.85 2.38 −0.008 −0.016 0.10 0.12 
1169 8.20 8.74 −0.037 −0.042 0.37 0.32 
1619 3.23 3.32 −0.003 0.001 0.22 0.36 
1626 6.56 6.88 0.045 −0.014 0.11 0.09 
1633 7.82 6.87 −0.034 −0.010 0.20 0.46 
1763 8.17 9.36 −0.158 −0.091 0.14 0.12 
1767 5.51 4.78 −0.073 −0.013 0.33 0.58 
1786 6.08 6.14 −0.153 −0.110 0.18 0.17 
1787 3.12 3.72 0.123 0.053 0.48 0.23 
1795 5.61 5.78 −0.164 −0.103 0.32 0.20 
1824 2.43 3.83 −0.127 −0.116 0.14 0.09 
1832 6.08 5.94 −0.118 −0.064 0.12 0.12 
1836 8.96 8.13 −0.122 −0.044 0.36 0.42 
2107 7.04 9.15 −0.054 −0.097 0.47 0.42 
2111 4.35 5.41 0.004 −0.025 0.47 0.46 

Reverse 
59 6.00 6.02 −0.025 0.146 0.21 0.24 
63 8.09 9.02 −0.164 −0.099 0.50 0.28 
71 12.28 14.00 −0.004 −0.369 0.14 0.19 
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Table 7.3—Continued. 

 
Record ID 
in NGA 
Database 

 
 

߱௠௜ௗ ⁄ߨ2  (Hz) ߱′ ⁄ߨ2  (Hz/s) ߞ௙ (ratio) 

Major 
Component 

Intermediate 
Component 

Major 
Component 

Intermediate 
Component 

Major 
Component 

Intermediate 
Component 

Reverse 

72 10.61 9.64 −0.056 −0.068 0.30 0.21 
73 13.04 10.60 −0.337 −0.235 0.44 0.44 
87 7.72 8.83 −0.149 −0.207 0.14 0.21 
89 8.73 8.97 −0.127 0.071 0.25 0.30 

139 6.42 6.42 0.114 −0.030 0.24 0.27 
369 2.39 1.95 −0.062 −0.087 0.08 0.15 
511 7.20 7.30 0.187 0.382 0.14 0.18 
512 6.99 9.03 −0.619 −0.319 0.24 0.11 
528 12.23 15.46 −0.172 −0.196 0.22 0.22 
536 18.71 21.98 −1.219 −1.437 0.24 0.26 
537 12.13 12.59 −0.131 −0.122 0.15 0.30 
541 14.88 13.56 0.029 0.100 0.15 0.16 
769 3.88 4.85 −0.052 −0.116 0.05 0.13 
771 1.81 1.79 0.050 0.028 0.06 0.05 
781 4.05 4.43 −0.055 −0.038 0.20 0.23 
782 4.76 5.54 0.051 −0.054 0.09 0.06 
788 2.47 4.21 0.042 −0.069 0.17 0.16 
789 2.40 2.14 −0.074 0.050 0.09 0.06 
791 2.53 2.94 −0.046 −0.031 0.21 0.21 
795 1.79 2.74 0.067 −0.054 0.10 0.12 
797 6.58 8.22 −0.242 −0.200 0.28 0.29 
801 6.78 7.47 0.044 −0.092 0.38 0.39 
804 4.07 6.94 0.038 −0.141 0.20 0.24 
809 7.76 11.02 0.130 −0.291 0.14 0.14 
810 5.64 6.16 −0.054 0.068 0.07 0.13 
813 3.29 4.93 0.132 −0.101 0.16 0.15 
943 5.63 5.24 −0.070 −0.093 0.05 0.16 
946 5.11 5.68 −0.078 −0.126 0.32 0.17 
957 4.81 4.46 −0.092 −0.115 0.23 0.35 
989 4.09 3.38 −0.367 −0.082 0.54 0.29 
994 5.83 7.89 −0.016 −0.372 0.23 0.48 

1011 5.25 7.53 0.056 −0.261 0.38 0.20 
1012 4.65 6.01 −0.148 −0.244 0.21 0.62 

1020 7.48 6.83 −0.208 −0.069 0.07 0.16 
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Table 7.3—Continued 

 
Record ID 
in NGA 
Database 

 
 

߱௠௜ௗ ⁄ߨ2  (Hz) ߱′ ⁄ߨ2  (Hz/s) ߞ௙ (ratio) 

Major 
Component 

Intermediate 
Component 

Major 
Component 

Intermediate 
Component 

Major 
Component 

Intermediate 
Component 

 
 
 
 
 
 
 
 
 
 
 

Reverse 

1021 6.85 5.47 −0.109 −0.113 0.31 0.43 
1023 6.69 6.53 −0.258 −0.152 0.15 0.32 
1027 5.00 4.80 −0.103 −0.067 0.20 0.53 
1029 5.17 4.75 −0.139 0.009 0.36 0.28 
1033 5.62 5.89 −0.185 −0.213 0.22 0.21 
1041 6.01 6.87 −0.168 −0.180 0.13 0.29 
1060 4.76 4.42 −0.123 −0.089 0.05 0.16 
1074 2.68 3.29 −0.030 −0.135 0.16 0.19 
1078 5.03 6.00 −0.020 −0.049 0.20 0.28 
1091 5.30 5.58 0.062 −0.066 0.40 0.27 
1096 3.80 3.51 −0.080 −0.031 0.22 0.17 
1206 2.17 2.93 −0.014 −0.026 0.09 0.08 
1234 2.08 2.07 −0.010 −0.007 0.05 0.09 
1245 6.64 5.88 −0.050 −0.058 0.11 0.15 
1257 2.03 2.91 −0.010 −0.032 0.05 0.05 
1273 3.23 3.25 −0.093 −0.069 0.17 0.23 
1278 2.32 1.99 −0.051 −0.039 0.09 0.10 
1287 2.77 2.51 −0.056 −0.078 0.06 0.12 
1293 3.87 4.12 −0.077 −0.020 0.12 0.11 
1302 5.77 6.60 −0.090 −0.093 0.10 0.10 
1325 3.54 3.96 −0.038 −0.052 0.09 0.15 
1347 5.11 5.45 −0.097 −0.126 0.09 0.13 
1350 5.61 4.33 −0.080 −0.092 0.05 0.09 
1377 5.32 4.66 −0.088 −0.045 0.11 0.11 
1391 4.33 3.45 −0.079 −0.058 0.03 0.04 
1485 4.45 4.85 −0.029 −0.054 0.49 0.47 
1517 1.33 1.85 0.009 −0.023 0.09 0.15 
1518 4.90 6.85 −0.148 −0.273 0.28 0.18 
1520 10.14 11.44 0.128 0.205 0.13 0.15 
1548 2.21 2.47 −0.063 −0.065 0.14 0.13 
1576 3.68 3.71 −0.034 −0.038 0.07 0.07 
1577 3.68 3.49 −0.041 −0.043 0.05 0.07 
1585 3.87 3.86 −0.073 −0.073 0.10 0.09 
1587 3.62 3.59 −0.025 −0.029 0.04 0.04 
1594 4.75 4.86 −0.077 −0.071 0.09 0.13 
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Table 7.4  Error measures for optimized values of filter parameters given in Table 7.3. 

 
Record ID 

in NGA 
Database 

 
 

߳ఠ 
(Calculated for 1% to 99% levels of ܫ௔) 

߳఍ 
(Calculated for 5% to 95% levels of ܫ௔) 

Major 
Component 

Intermediate 
Component 

Major 
Component 

Intermediate 
Component 

Strike-Slip 

164 0.02 0.02 0.09 0.09
265 0.01 0.02 0.06 0.03
454 0.01 0.02 0.15 0.16
455 0.03 0.02 0.09 0.12
471 0.02 0.02 0.24 0.21
472 0.01 0.02 0.21 0.18
476 0.02 0.01 0.34 0.12
891 0.01 0.01 0.06 0.03
897 0.01 0.01 0.08 0.05
922 0.02 0.03 0.06 0.07
925 0.02 0.02 0.07 0.04
928 0.01 0.01 0.05 0.06
934 0.01 0.02 0.07 0.10
938 0.01 0.01 0.10 0.10

1109 0.01 0.01 0.16 0.09
1112 0.01 0.01 0.12 0.08
1154 0.00 0.00 0.08 0.07
1169 0.01 0.01 0.05 0.04
1619 0.01 0.03 0.15 0.17
1626 0.01 0.01 0.04 0.10
1633 0.01 0.01 0.05 0.09
1763 0.01 0.02 0.08 0.08
1767 0.02 0.05 0.06 0.11
1786 0.02 0.04 0.15 0.12
1787 0.02 0.01 0.06 0.06
1795 0.02 0.02 0.13 0.12
1824 0.06 0.04 0.11 0.12
1832 0.02 0.02 0.11 0.11
1836 0.01 0.01 0.08 0.06
2107 0.01 0.01 0.05 0.05
2111 0.00 0.00 0.02 0.06

Reverse 
59 0.02 0.02 0.06 0.09
63 0.02 0.01 0.05 0.06
71 0.02 0.01 0.17 0.14 
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Table 7.4—Continued. 

 
Record ID 

in NGA 
Database 

 
 

߳ఠ 
(Calculated for 1% to 99% levels of ܫ௔) 

߳఍ 
(Calculated for 5% to 95% levels of ܫ௔) 

Major 
Component 

Intermediate 
Component 

Major 
Component 

Intermediate 
Component 

 72 0.02 0.02 0.07 0.10
73 0.02 0.01 0.05 0.09
87 0.01 0.02 0.07 0.05
89 0.02 0.02 0.07 0.07

139 0.02 0.02 0.08 0.07
369 0.02 0.02 0.15 0.11
511 0.02 0.02 0.09 0.14
512 0.06 0.03 0.13 0.04
528 0.02 0.02 0.03 0.09
536 0.02 0.03 0.11 0.08
537 0.02 0.02 0.12 0.04
541 0.01 0.01 0.12 0.12
769 0.01 0.02 0.35 0.08
771 0.01 0.01 0.33 0.71
781 0.01 0.02 0.18 0.06
782 0.01 0.01 0.15 0.23
788 0.02 0.02 0.11 0.13
789 0.02 0.01 0.23 0.49
791 0.02 0.02 0.19 0.14
795 0.02 0.02 0.19 0.18
797 0.03 0.05 0.06 0.04
801 0.02 0.01 0.11 0.13
804 0.02 0.03 0.09 0.07
809 0.01 0.02 0.05 0.12
810 0.02 0.01 0.31 0.10
813 0.02 0.02 0.06 0.09
943 0.02 0.01 0.21 0.12
946 0.02 0.02 0.07 0.19
957 0.01 0.01 0.08 0.06
989 0.03 0.03 0.03 0.04
994 0.03 0.04 0.05 0.06

1011 0.01 0.01 0.08 0.11
1012 0.01 0.01 0.10 0.11
1020 0.01 0.01 0.14 0.07
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Table 7.4—Continued. 

 
Record ID 

in NGA 
Database 

 
 

߳ఠ 
(Calculated for 1%  to 99% levels of ܫ௔) 

߳఍ 
(Calculated for 5% to 95% levels of ܫ௔) 

Major 
Component 

Intermediate 
Component 

Major 
Component 

Intermediate 
Component 

Reverse 

1021 0.02 0.02 0.10 0.04
1023 0.01 0.02 0.30 0.08
1027 0.03 0.03 0.09 0.04
1029 0.01 0.02 0.08 0.04
1033 0.02 0.02 0.12 0.11
1041 0.01 0.02 0.22 0.11
1060 0.01 0.01 0.09 0.16
1074 0.01 0.01 0.19 0.10
1078 0.01 0.02 0.07 0.05
1091 0.01 0.01 0.14 0.13
1096 0.02 0.01 0.12 0.12
1206 0.00 0.00 0.16 0.05
1234 0.00 0.00 0.53 0.09
1245 0.00 0.00 0.05 0.05
1257 0.02 0.02 0.37 0.20
1273 0.00 0.00 0.06 0.05
1278 0.00 0.01 0.12 0.09
1287 0.00 0.00 0.13 0.12
1293 0.01 0.01 0.05 0.04
1302 0.00 0.00 0.06 0.09
1325 0.00 0.01 0.05 0.06
1347 0.01 0.01 0.11 0.07
1350 0.00 0.00 0.13 0.04
1377 0.00 0.00 0.05 0.03
1391 0.01 0.00 0.30 0.30
1485 0.00 0.00 0.07 0.10
1517 0.00 0.00 0.12 0.06
1518 0.00 0.01 0.05 0.07
1520 0.00 0.00 0.08 0.05
1548 0.00 0.01 0.04 0.13
1576 0.01 0.00 0.21 0.20
1577 0.00 0.00 0.18 0.30
1585 0.01 0.01 0.02 0.05
1587 0.01 0.01 0.30 0.41
1594 0.00 0.00 0.06 0.03
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Table 7.5 Summary statistical data of the identified model parameters of principal ground 
motion components. 

Parameter Minimum Maximum Sample Mean 
Sample Standard 

Deviation 
Coefficient of 

Variation ܫ௔,௠௔௝௢௥ (s.g.) 0.0005 2.0744 0.0646 0.2227 ௔,௜௡௧௘௥ (s.g.) 0.0003 0.4345ܫ3.45 0.0290 0.0648 ହିଽହ (s) 5.00 41.53ܦ2.24 17.42 9.31 ௠௜ௗ (s) 0.93 33.59ݐ0.53 12.41 7.42 0.60߱௠௜ௗ/2ߨ (Hz) 1.33 21.98 5.93 3.18 0.54߱ᇱ/2ߨ (Hz/s) −1.437 0.382 −0.090 0.168 ௙ (Ratio) 0.03 0.71ߞ1.87 0.21 0.14 0.64
 

Table 7.6  Distribution models assigned to the model parameters. 

Parameter Fitted Distribution13 
Distribution 

Bounds ܫ ҧ௔,௠௔௝௢௥ (s.g.) Lognormal (0, ܫ (∞ ҧ௔,௜௡௧௘௥ (s.g.) Lognormal (0, ,Gamma (0 (Hz) ߨ௠௜ௗ (s) Beta [0.5,35] ߱௠௜ௗ/2ݐ ହିଽହ (s) Beta [4,45]ܦ (∞ ∞) ߱ᇱ/2ߨ  (Hz) Two-sided Truncated Exponential [−2,0.5] ߞ௙ (Ratio) Beta [0.02,1] 
 

Table 7.7 Maximum likelihood estimates of regression coefficients and standard error 
components. ݅ ߚ௜,଴ ߚ௜,ଵ ߚ௜,ଶ ߚ௜,ଷ ߚ௜,ସ ߬௜ ߪ௜ P-value14 1௠௔௝௢௥ − 1.841 0.008 3.065 − 1.351 − 0.168 0.176 0.614 0.0001௜௡௧௘௥ − 2.408 − 0.073 3.307 − 1.295 − 0.246 0.474 0.583 0.0002 − 5.859 − 0.707 6.472 0.231 − 0.565 0.475 0.577 0.0003 − 5.038 − 0.296 4.614 0.350 − 0.175 0.495 0.431 0.0004 2.086 − 0.041 − 1.660 − 0.217 0.037 0.696 0.714 0.0015 − 3.224 0.067 3.262 0.029 − 0.144 0.168 0.921 0.0196 0.692 − 0.676 0.296 − 0.341 0.181 0.704 0.709 0.000

 

                                                 
13 Means and standard deviations of these distributions are according to columns 4 and 5 of Table 7.5. 
14 The smallest significance level at which the null hypothesis ߚ௜,ଵ = ௜,ଶߚ = ௜,ଷߚ = ௜,ସߚ = 0 is rejected. F-test is 

employed. 
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Table 7.8  95% confidence intervals for the regression coefficients. 

 Confidence Intervals ݅  ߚ௜,ଵ  ߚ௜,ଶ  ߚ௜,ଷ  ߚ௜,ସ  1௠௔௝௢௥ [−0.273 , 0.289] [1.293 , 4.838] [−1.576 , −1.126] [−0.865 , 0.530]1௜௡௧௘௥ [−0.342 , 0.196] [1.613 , 5.001] [−1.510 , −1.080] [−0.912 , 0.421]2 [−0.936 , − 0.478] [5.037 , 7.907] [0.117 , 0.346] [−1.030 , −0.101]3 [−0.543 , −0.048] [3.062 , 6.167] [0.226 , 0.474] [−0.678 , 0.327]4 [−0.338 , 0.256] [−3.521 , 0.201] [−0.365 , −0.068] [−0.566 , 0.639]5 [−0.223 , 0.358] [1.443 , 5.081] [−0.116 , 0.174] [−0.733 , 0.445]6 [−0.963 , −0.338] [−1.506 , 2.098] [−0.484 , −0.198] [−0.402 , 0.764]
 

Table 7.9  P-values for the t-test with the null hypothesis, ࢐,࢏ࢼ = ૙. 

 P-value15 ݅ ߚ௜,ଵ ߚ௜,ଶ ߚ௜,ଷ ߚ௜,ସ 1௠௔௝௢௥ 0.955 0.001 0.000 0.6341௜௡௧௘௥ 0.592 0.000 0.000 0.4662 0.000 0.000 0.000 0.0173 0.020 0.000 0.000 0.4924 0.784 0.080 0.004 0.9045 0.647 0.001 0.697 0.6316 0.000 0.746 0.000 0.542
 

  

                                                 
15 The smaller this number is, the more significant the estimate of the corresponding coefficient in Table 7.7 is. 
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Table 7.10 Sample correlation coefficients between the transformed model parameters of 
two horizontal ground motion components. 

  Major Component Intermediate Component 

 ଺ݒ ହݒ ସݒ ଷݒ ଶݒ ଵݒ ଺ݒ ହݒ ସݒ ଷݒ ଶݒ ଵݒ  

M
aj

or
 C

om
po

ne
nt

 

ହ −0.25 −0.21 −0.22 −0.19ݒ   .ସ −0.21 −0.07 −0.24 1 Symݒ        ଷ −0.04 +0.68 1ݒ         ଶ −0.38 1ݒ          ଵ 1ݒ 1 ଺ −0.06 −0.26 −0.26 +0.28ݒ       −0.06 1   

In
te

rm
ed

ia
te

 C
om

po
ne

nt
 

ଵ +0.92 −0.31 +0.04 −0.13ݒ +0.19 −0.01 1 ଶ −0.30 +0.89 +0.65 −0.15ݒ   −0.21 −0.23 −0.31 1 ଷ −0.03 +0.68 +0.96 −0.29ݒ   −0.22 −0.29 +0.01 +0.69 1 ସ −0.13 −0.17 −0.30 +0.94ݒ   −0.10 +0.32 −0.08 −0.20 ହ +0.09 −0.11 −0.24 −0.10ݒ  1 0.34− +0.52 −0.02 +0.07 −0.18 ଺ +0.02 −0.17 −0.21 +0.29ݒ1 0.19− 0.24− −0.13 +0.75 −0.00 −0.17 −0.22 +0.29 −0.05 1
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Fig. 7.1 (a) Directions of principal axes according to Penzien and Watabe (1975).  
(b) Rotation of two orthogonal horizontal components by angle ࣂ. 
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Fig. 7.2 Horizontal as-recorded components of (a) Northridge earthquake recorded at Mt Wilson – CIT Station, and (b) Chi-
Chi, Taiwan, earthquake recorded at HW A046 Station. 
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Fig. 7.3 Correlation coefficient between two horizontal components of records in Fig. 7.2 after they have been rotated 
counterclockwise according to Eq. (7.4).  
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Fig. 7.4  Horizontal components of records in Fig. 7.2, rotated into principal components. 
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Fig. 7.5 Rotated ground motion components and fitted modulating functions. Each row shows 
a pair of horizontal components in principal directions. Figures on the top row show 
an example with ࢀ૙ = ૙. Figures in the middle row show an example with ࢀ૙ ൐ 0. 
Figures in the bottom row provide an example of uncommon irregular behavior of 
the recorded motion. 
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Fig. 7.6 Normalized frequency diagrams of the identified Arias intensity for the major and intermediate components of 
records in the principal ground motion components database. Fitted probability density functions are superimposed. 
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Fig. 7.7 Normalized frequency diagrams of the identified model parameters for the principal ground motion components 
database. Data corresponding to major and intermediate components are combined. Fitted probability density 
functions are superimposed. 
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Fig. 7.8 Empirical cumulative distribution functions (CDFs) of the identified Arias intensity for the major and intermediate 
components of records in the principal ground motion components database. CDFs of the fitted distributions are 
superimposed.  
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Fig. 7.9 Empirical cumulative distribution functions (CDFs) of the indentified model parameters for the principal ground 
motion components database. Data corresponding to major and intermediate components are combined. CDFs of the 
fitted distributions are superimposed. 
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Recorded motion (Major component): ܫ௔ = 0.0165g.s , ܦହିଽହ = 16.7s , ݐ௠௜ௗ = 18.3s ఠ೘೔೏ଶగ = 3.9Hz  ,   
ఠᇲଶగ = −0.08Hz/s  ,  ߞ௙ = 0.12  

 
Recorded motion (Intermediate component): ܫ௔ = 0.0135g.s , ܦହିଽହ = 17.0s , ݐ௠௜ௗ = 17.8s ఠ೘೔೏ଶగ = 4.1Hz  ,   

ఠᇲଶగ = −0.02Hz/s  ,  ߞ௙ = 0.11  
 

Fig. 7.10  Pairs of acceleration time-histories of one recorded (same as in Fig. 7.4b) and 
three simulated ground motion components along principal directions. 
Model parameters for each record are provided on the left. All motions 
correspond to ࡲ = ૚, ࡹ = ૠ. ૟૛, ࡾ = ૞૚. ૡ km, and ࢂ = ૟૚ૡ m/s. 

 

Simulated motion (Major component): ܫ ҧ௔ = 0.0070g.s , ܦହିଽହ = 22.1s , ݐ௠௜ௗ = 14.6s ఠ೘೔೏ଶగ = 4.5Hz  ,   
ఠᇲଶగ = −0.18Hz/s  ,  ߞ௙ = 0.15  

 
Simulated motion (Intermediate component): ܫ ҧ௔ = 0.0031g.s , ܦହିଽହ = 25.7s , ݐ௠௜ௗ = 16.5s ఠ೘೔೏ଶగ = 3.5Hz  ,   

ఠᇲଶగ = −0.05Hz/s  ,  ߞ௙ = 0.08  
 

 

Simulated motion (Major component): ܫ ҧ௔ = 0.0147g.s , ܦହିଽହ = 17.3s , ݐ௠௜ௗ = 10.1s ఠ೘೔೏ଶగ = 8.1Hz  ,   
ఠᇲଶగ = −0.12Hz/s  ,  ߞ௙ = 0.42  

 
Simulated motion (Intermediate component): ܫ ҧ௔ = 0.0047g.s , ܦହିଽହ = 21.0s , ݐ௠௜ௗ = 10.7s ఠ೘೔೏ଶగ = 8.6Hz  ,   

ఠᇲଶగ = −0.18Hz/s  ,  ߞ௙ = 0.50  
 

 

Simulated motion (Major component): ܫ ҧ௔ = 0.0099g.s , ܦହିଽହ = 27.2s , ݐ௠௜ௗ = 17.1s ఠ೘೔೏ଶగ = 3.2Hz  ,   
ఠᇲଶగ = −0.03Hz/s  ,  ߞ௙ = 0.20  

 
Simulated motion (Intermediate component): ܫ ҧ௔ = 0.0034g.s , ܦହିଽହ = 24.8s , ݐ௠௜ௗ = 16.9s ఠ೘೔೏ଶగ = 3.7Hz  ,   

ఠᇲଶగ = −0.13Hz/s  ,  ߞ௙ = 0.35 
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Fig. 7.11  Velocity time-histories corresponding to the records in Fig. 7.10.  
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Fig. 7.12  Displacement time-histories corresponding to the records in Fig. 7.10. 
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8 Summary, Conclusions, and Future Studies 

8.1 MAJOR DEVELOPMENTS AND FINDINGS 

The research described in this report focuses on stochastic modeling and simulation of ground 

motion time-histories for use in response-history or stochastic dynamic analysis. Ultimately, this 

research benefits the emerging field of performance-based earthquake engineering (PBEE) by 

providing a convenient method of generating synthetic ground motions for specified design 

scenarios that have characteristics similar to those of real earthquake ground motions. The two 

main objectives proposed in Chapter 1 are fulfilled: (1) a stochastic model for strong ground 

motion is developed that has important advantages over existing models; an overview of the 

model is presented in Figure 2.15, (2) a method for generating an ensemble of synthetic ground 

motions for specified earthquake and site characteristics is developed; an overview of the method 

is presented in Figure 5.1.  

 

The major developments and findings of this study are summarized as follows: 

 

• A new site-based, fully nonstationary stochastic model to describe earthquake ground 

motions is developed. The model is based on time modulation of the response of a linear 

filter with time-varying characteristics to a discretized white-noise excitation. The resulting 

stochastic process is completely defined by the form of the modulating function, the form of 

the unit impulse response function of the filter, and the parameters that define these 

functions.  

• Specific functional forms for the filter frequency and filter damping ratio are proposed based 

on investigation of recorded ground motions. It is concluded that for a typical strong ground 

motion the filter frequency can be represented by a linear (typically decreasing) function, 
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whereas the filter damping ratio can be represented by a constant or a piece-wise constant 

function.  

• Acceleration time-histories obtained by simulating the stochastic model are high-pass filtered 

to achieve zero velocity and displacement residuals. The selected filter is a critically damped 

oscillator. The oscillator frequency determines the level of high-pass filtering and helps to 

avoid overestimation of simulated response spectrum ordinates at long periods. 

• The proposed stochastic ground motion model has a number of important advantages over 

existing models:  

(a) The stochastic model represents both the temporal and spectral nonstationary 

characteristics of real earthquake ground motions. Furthermore, these characteristics are 

completely decoupled, facilitating identification and interpretation of the model 

parameters. Separation of the temporal and spectral nonstationarities is achieved through 

normalization of the stochastic process by its standard deviation prior to time modulation. 

As a result, the modulating function characterizes the variation of the intensity in time, 

whereas the time-varying filter describes the evolving frequency content. 

(b) The model has a small number of parameters with physical interpretations. These 

parameters can be as few as six, with three parameters controlling the evolving intensity 

of the motion, two parameters controlling the evolving predominant frequency of the 

motion, and one parameter controlling the bandwidth. 

(c) Modeling is done entirely in the time-domain. 

(d) The discretized form of the model facilitates digital simulation as well as nonlinear 

stochastic dynamic analysis.  

(e) Simulation of a synthetic ground motion for specified model parameters is simple and 

requires little more than generation of standard normal random variables, their 

multiplication with deterministic time-varying functions, and post-processing through a 

high-pass filter. 

• Given a recorded ground motion, the stochastic model parameters are estimated by fitting to 

selected statistical characteristics of the target accelerogram. There is no need for 

complicated processing of the recorded motion, such as Fourier analysis or estimation of 

evolutionary power spectral density. Instead, the model fitting requires computation of the 

cumulative energy, the cumulative count of zero-level up-crossings, and the cumulative 
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count of negative maxima and positive minima of the accelerogram. This innovative 

parameter identification method is simple and efficient. Furthermore, the entire analysis is 

done in the time domain.  

• A new framework is proposed for generating an ensemble of synthetic ground motions for 

specified earthquake and site characteristics. By fitting the stochastic model to a database of 

recorded ground motions with known earthquake and site characteristics, sample 

observations of the model parameters are obtained. Statistical data analyses are then 

performed to develop predictive equations for the model parameters in terms of selected 

earthquake and site characteristics. Uncertainty in the model parameters are properly 

accounted for. For a given design scenario with known earthquake and site characteristics, 

the predictive equations are employed to simulate realizations of the model parameters. 

Inputting each set of parameter realizations into the stochastic model results in an ensemble 

of synthetic ground motions that can be used in place of or in conjunction with recorded 

ground motions.  

• The above framework is applied to a database of ground motions taken from the widely used 

PEER NGA strong-motion database to develop predictive equations for the model 

parameters in terms of the faulting mechanism, moment magnitude, source-to-site distance, 

and the shear-wave velocity of the local soil. The database contains ground motions from 

shallow crustal earthquakes in active tectonic regions. Only strong motions corresponding to 

earthquakes of magnitude 6.0 and greater, source-to-site distances of at least 10 km, and stiff 

soil conditions with ௌܸଷ଴ of at least 600 m/s are considered. Simplified parameter 

identification methods, suitable for analyzing a large database of recorded motions, are 

developed to identify the model parameters for every record in the database. The model 

parameters are assigned probability distributions based on empirical data. Using the assigned 

probability distributions, model parameters are transformed to the standard normal space to 

satisfy the normality requirement of subsequent regression analysis. Because the database 

contains different numbers of recordings from different earthquakes, a random-effects 

regression analysis method is employed to separately account for the inter- and intra-event 

uncertainties. The maximum likelihood method is used to estimate the regression coefficients 

and the error variances, resulting in an empirical predictive equation for each transformed 
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model parameter. Correlation analysis is performed to determine the correlation coefficients 

among the transformed model parameters.  

• The method of generating a suite of synthetic ground motions for specified earthquake and 

site characteristics is presented in detail. Cases where all the model parameters are unknown 

and where some model parameters are specified are considered. The simulation method is 

based on randomly generating realizations of the model parameters from their joint 

distribution, conditioned on the earthquake and site characteristics. This joint distribution is 

determined from the empirical predictive equations for the model parameters and their 

corresponding correlation coefficients. 

• The proposed method of generating a suite of synthetic ground motions for specified 

earthquake and site characteristics accounts for the variability in the model parameters as 

well as the stochasticity in the ground motion process. Hence, it maintains the natural 

variability of real ground motions. 

• The proposed ground motion simulation method is validated by comparing the resulting 

synthetics to real recorded motions and to NGA models:  

(a) Synthetic acceleration, velocity, and displacement time-histories are compared with 

recorded time-histories, indicating similar characteristics and variability between 

synthetic and real earthquake ground motions. 

(b) The elastic response spectra of synthetic motions are compared to those of recorded 

motions. It is concluded that the response spectrum of a recorded motion, which is 

regarded as just one realization of possible ground motions for the specified earthquake 

and site characteristics, is within the range of the spectral values predicted by synthetic 

motions.  

(c) The statistics of the elastic response spectra of a large number of synthetic motions for 

various magnitude and source-to-site distances are compared to their corresponding 

predicted values by four of the NGA models. In general, the median and variability of 

elastic response spectra for synthetics are in close agreement with those of the NGA 

models. This holds true for all spectral periods of interest in structural engineering, 

moment magnitudes greater than about 6.5, and source-to-site distances greater than 10 

km. The results of this study correspond to stiff soil conditions where nonlinear soil 

behavior is not expected. 
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• A method for simulating orthogonal horizontal ground motion components for specified 

earthquake and site characteristics is developed. A new ground motion database is 

constructed by rotating recorded horizontal ground motion component pairs into their 

principal axes, i.e., the orthogonal axes along which the components are statistically 

uncorrelated. Model parameters are identified for each principal component and new 

predictive equations are constructed. Correlation coefficients between model parameters of 

the two horizontal principal components are estimated empirically. As expected, these 

correlation coefficients are high and should not be neglected in the simulation. An extension 

of the stochastic ground motion model is utilized to simulate two horizontal ground motion 

components with correlated parameters along the principal axes. The synthetic components 

can then be rotated into any desired direction, e.g., the input axes of a structure, through a 

simple orthogonal transformation. 

8.2 RECOMMENDATIONS FOR FUTURE STUDIES 

In order to improve the accuracy of the stochastic model and the predictive equations and to 

improve the applicability of the ground motion simulation methods presented in this study 

following topics are recommended for future research: 

  

• In this study, we selected a single-degree-of-freedom linear filter with time-varying 

frequency and damping ratio. As mentioned in Chapter 2, such a filter can characterize only a 

single dominant frequency in the ground motion. To simulate ground motions with multiple 

dominant frequencies, a multi-degree-of-freedom filter may be selected. Selection of such a 

filter is possible with the proposed stochastic model. However, additional parameters will 

need to be introduced and identified, which may reduce the efficiency in modeling and 

simulation.  

• In this study, recommendations on the selection of the corner frequency for high-pass 

filtering, ߱௖, were provided and the sensitivity of simulated motions to this parameter was 

briefly discussed in Chapter 5. Further studies should be conducted to gain a better 

understanding of the effect of ߱௖ on the characteristics of the simulated ground motion. 



 

194 

 

Preliminary analyses suggest that displacement time-histories are somewhat sensitive with 

respect to ߱௖, but further studies are required. 

• The predictive equations and correlation coefficients for the model parameters were 

developed using a specific database of recorded ground motions. This database was 

considered adequate for the intended applications of the present study. Limits on earthquake 

magnitude, source-to-site distance, and local soil stiffness were imposed to obtain simpler 

(fewer terms in regression formulas) and more reliable (customized for strong earthquakes 

that are capable of causing nonlinear behavior) predictive equations. The selection of the 

database in no way limits the methodology presented in this study. As more earthquakes 

occur and the number of recorded ground motions increases, the ground motion database can 

be expanded and the predictive equations can be validated or new equations can be 

developed.  

• In this study, only four basic parameters were considered for earthquake and site 

characteristics: faulting mechanism, moment magnitude, source-to-site distance, and shear-

wave velocity of the soil. For more refinement in modeling, future studies may include 

additional parameters characterizing the earthquake source, travel path, or local site 

conditions. For example, parameters to account for the effects of soil/sediment depth, 

nonlinear soil amplification, or factors to account for magnitude saturation may be 

considered. Additionally, various functional forms for the predictive equations can be 

investigated. In this study, several functional forms for the explanatory functions were 

examined, but a linear form was chosen for the overall regression formula for the sake of 

simplicity and considering the relatively narrow range of earthquake magnitudes. Other 

forms may be investigated in future studies.  

• Currently our method of ground motion simulation is limited to shallow crustal earthquakes 

in tectonically active regions. The applicability of the methods proposed in this study for 

other seismic environments such as subduction zones and stable continental regions, where 

lack of recorded ground motions is a much bigger problem, should be investigated. 

Subduction zones are capable of creating disastrous earthquakes with very large magnitudes 

at great depths, and stable continental regions are vulnerable to earthquakes. As a result, if 

validated, synthetic generation of ground motions would be extremely beneficial in these 

areas. Since the physical and geological characteristics of subduction zones are different 
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from shallow and brittle parts of the crust, appropriate changes that reflect these differences 

must be made to the stochastic ground motion model. Furthermore, suitable databases of 

ground motions must be selected for each region to construct new relations between the 

model parameters and the earthquake and site characteristics. In development of predictive 

equations, due to lack of data in these areas, more emphasis should be placed on the physics 

of seismic wave propagation than on empirical analysis. 

• The simulation methods presented in this study are applicable only to sites that are located at 

least 10 km from the fault. These methods should be extended to near-fault ground motions. 

Due to scarcity of recorded near-fault ground motions, this extension would be of particular 

interest in PBEE. A study is under way that models the distinct characteristics of near-fault 

ground motions such as rupture directivity effects and the presence of a dominant long-

period pulse. The residue motion, i.e., the ground motion after removal of the directivity 

pulse, is modeled by a stochastic process similar to the one proposed in this study. 

• The simulation methods presented in this study are applicable to linear soil conditions with ௌܸଷ଴ ൐ 600 m/s. For softer soil conditions, one can generate synthetic motions at the firm 

soil layer and propagate them through the softer soil deposits using standard methods of soil 

dynamics that account for the nonlinearity in the shear modulus and damping of the soil. 

Alternatively, future studies may be conducted to directly account for the nonlinear soil 

behavior in the simulation approach. One way is to use additional factors in the predictive 

equations that account for nonlinear soil amplification effects. 

• Modeling of multi-dimensional ground motions is valuable for 3D dynamic analyses of 

structural systems. The techniques used in this study to model and simulate two horizontal 

components of ground motion can be easily extended to include the vertical component. 
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