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C1. Does s (liq) vary with ¢’ directly?
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C2. Does s,(lig)/a’,, vary with penetration resistance?

Liquefied strength ratio, s(liq)/c’,,
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Q sy(liq)/s'y, back-calculated from flow failure with converted CPT from measured SPT
0.3 (=7 sy(lig)/c'yo back-calculated from flow failure with estimated CPT |
' A" sy(liq)/c'y, estimated from flow failure with measured, converted, or estimated CPT
Olson & Stark (2002)
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C3. Can s (liq)/c',, be extrapolated indefinitely?
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C3. Can s (liq)/c',, be extrapolated indefinitely?
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C3. Can s (liq)/c',, be extrapolated indefinitely?
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C3. Can s (liq)/c',, be extrapolated indefinitely?

Liquefied strength ratio, s(liq)/c’,,
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C3. Can s (liq)/c',, be extrapolated indefinitely?

Liquefied strength ratio, s(liq)/c’,,
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C4. Does lab data approximate field case histories?

-En 300 T [ T | T | T | T [ T [ T | T

= - O Back-calculated from liquefaction flow failure Olson and Mattson (2008); |
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C5. How does PWP/void redistribution affect s (liq)?

0.4
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C5. How does PWP/void redistribution affect s (liq)?
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C6. What is s, (lig) in medium dense to dense sandy soils?

CPT tip resistance, q., (MPa) SPT blow count, (N,),
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PF1. Better documented field case histories

@ Complete pre- and post-failure geometries (remote imagery)

@ Well-defined stratigraphy with Penetration resistance (SPT,
CPT, BPT) and Vs

@ Well-defined pre-failure phreatic surface
@ Strengths for non-liquefied soils

@ Development of instrumented field sites for flow slides?
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PF2. Novel methods to measure s, (liq)

® Field vane shear test (W. Charlie’s piezovane?) in silty soils
@ T-bar in blast-induced liquefied soils
@ Coupon pull test in centrifuge (Dewoolkar et al. 2016)

2.54 cm

AT @0 g g e gy .
ihdet vPPTS L RPTES T PP o PP PRTAL PR, o i 6 om
T v L COUBON: L AVDT, ™ e s T T s e e e e

30.5cm W o e R it T S e
Y b A N L TR L NS R PSR o Ty
TR oL e
: 121.9cm
(a) PLAN VIEW

® Motor Assembly—__

| LVDTH1 | LvDT2

-

T
<]

DU BOR S e, e BRARR T L T T e T
CAMIRRI. i ¥t ad  e IENOR R n Te
“PPTS..,

szecmPPTS . BPTS e ey o BPTRL L PRT R

s o

1.9 cmj_ }

121.9 cm Ty I-Japan
<4—3Shaking Direcion—p- :ed Ground Movements and Effects
(b) SECTIONAL VIEW 016



PF2. Novel methods to measure s, (liq)

® Field vane shear test (W. Charlie’s piezovane?) in silty soils
@ T-bar in blast-induced liquefied soils
@ Coupon pull test in centrifuge (Dewoolkar et al. 2016)
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Thank youl!

Questions?

olsons@illinois.edu
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Liguefaction-induced failure of sloped ground

Severe damage to bqulngs Infrastructures |l
and lifeline facilities..
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Laboratory observations
Failure for liquefiable* soils in sloped ground

(Chiaro et al., 2012)

,{@LU@

Liguefaction Shear failure

Au=100% (accumulation strain)

Ypa=2% FI Mo No liquefaction

(abroupt development deformation)

Au=100% and yp,>50% in just a few cycles

* Loose fully-saturated sandy soils




Stresses

Soil

strenqth

Key challenges
Understanding the faillure mechanisms

> Initial static shear stress (i.e. sloped ground)
> (i.e. earthquake),

» Confining pressure level, OCR

> (loose, dense), and
» Degree of saturation (fully or partially saturated)

> (clean sand, gravelly sand or sand with fines)

» Testing conditions
*» element tests (triaxial, simple shear, torsional shear)
+* model tests




Paths forward

Predictive method including slope effects
(not using Ka)

Laboratory «== Field

Shear stress & Solil strength

o0
[Test 10 (20-10) I

Dr=45.6%

Liquefaction

Shear failure Extent of
deformation

CONSEQUENCES




Lab observations (torsional simple shear tests)

L Boundary conditions:

:VDA=7-5% {| (A) Zero static shear stress

I line (i.e. level ground)

(B) Reversal stress line (n_ =0)
I (C) Zero cyclic shear stress

I (C) line (i.e. no earthquake)

¥ {| (D) Undrained shear strength

I line (n__=1)

Shear failure

Rapid flow (B)!

(A) O
quuefactlon

\\QDA 50 A) 1] ]
(E) Liquefaction in N=15 cycles

No failure Experimental data from Chiaro et al. (2012)

B Shear failure

@ Rapid flow liq.

LooseToyoura sand A Cyclic liquefaction (N <15)

| (Dr=50%; p,=100kPa) % No-lig. & no-failure; Cyclic lig. (N >15)
l L il L L | 1 L L l L L

-1 0 1 2

Chiaro et al. 2015 Nimin
SSR+CSR M




Field observations

]
1964 Niigata Earthquake
al2016g M =75

mTXI w
I

———— Hamada et al. (1994)

Niigata Earthquake | @ quUGafctlon

Fra 010G M TS iquefaction

L Water level

Sandy layer

Very loose
sand

Sud
decre

Dense
sand

(1a) Severe liquefaction zone
. (1b) Marginal liquefaction zone
" (2) Shear failure zone
00 } 15 cycles of loading (3) Safe zone

1.0 1.5

-2 1 2
Chiaro et al. 2017
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Motivation

1 Response of gravelly soils during
earthquakes still not fully understood

O Characterizing gravelly soils in a
reliable, cost-effective manner is
very challenging

O No reported back calculated residual
(post-liquefaction) shear strengths

from sites with liquefied gravels

Horizontal displacement and
rotation of quay wall




Integrated Approach

Laboratory Testing

Wertical LVDT |
‘*é Horizontal
Vertical .

load cell

Sample
container

Large-scale CSS used
for constant-volume

monotonic, cyclic, and
post-cyclic shear tests.

Numerical Modeling

3D DEM analyses

[ ;: M]c_'] IIGAN ENGINEERING

ITY of MAICHIGAN ® CCHLEGE of ENGINEERING

Field Response

Vs and DPT

measurements in the
field.

Back-analysis of case
histories from the 2014
Cephalonia, Greece
earthquake.
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Laboratory Testing [E
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Cyclic Simple Shear: 12” diameter

Mertical LVDT | constant volume/constant-load
el L Horlzopts monotonic/cyclic
load cell
50 — . . . ! 50
Sample A = oy ' T ' - . . .
contaP Y e o/ A (a) D, =43 -45% (b)
ner %% T T e —— This Study, 100 kPa
40 + — This Study, 200 kPa | 40t
- - -Yazdi (2004), 100 kPa
- - = Yazdi (2004), 200 kPa
© 30} © 30}
X ¥
20}
10}
O ] | ) 1 O 1 . i .
0 3 6 9 12 15 0 50 100 150 200
Y, (%) c,'(kPa)

Bender Elements and
Accelerometers for measuring Vs




Cyclic Simple Shear Test Results - Gravels

[ ;: M]{_‘l IIGAN ENGINEERING
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Normalized Shear Stress, o'

Number of Cycles

Normalized Effective Vertical Stress, ¢,'/c, '

Shear Strain, (%)
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Excess Pore Pressure Ratio, r, (%)
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Cyclic Simple Shear Test Results - Gravels

L Liquefied Non-liquefied -
a M =7.5
0 6 B Pea Gravel u O i _
. 12mmCLS e o c,' = 1atm
L |6 mmCLS A Ay -
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! ! i
t ! / -
! / 4
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/ / -
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’ 4 -
P I}
P ’
/ / -
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y,
,
/ R
,

Andrus and Stokoe, 2000
— — Caoetal., 2011 ]
Kayen et al., 2013

| ]
250 300 350
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Ultimate State (US) Shear Strength

1 IO L I T l T l T 1 DO T I T I T I T 1 L 0 L) l L] l
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POSt- CyCl IC M O n Oto n I C S h ear Res po n Se UNIVEESITY of MIICHIGAN ® COLLEGE of ENGINEERING
350 . .
1 20 l ' ' -V, measured b:efore cyclic testI
L —_-Dr= 470/0 _ 300 K i‘ ) ]
100 - —D,= 87% 12-mm CLS _ 250 i Y :
1 - fl;;l i - |
L, = 200 kPa ] %00 _
80 I- 6-mm CLS ~"150 i . :
s _ L _
Pea Gravel be , m ]
S 60 | ravel | 100 ¢
[
i} 1Z2-mm CLS | >0 __ | ® V_Post-Cyclic Test | __
40 - = 0 . L . 1 .
,,6-mm CLS 0 10 20 30
20 0.8 v (%)
. . | . ;
Pea Gravel .
0 ad-=ceeo-g" """ - ]
0 20 40

Volumetric strains:

All Denser specimens: ~ 1%
Looser Pea Gravel 1.5%
Looser Crushed Limestone 1.0%

30
Looser Ottawa Sand ~2% v (%) 8



[ ;: 1 MICHIGAN ENGINEERING

Field Testing and Case-Histories

i

sy
F.,'!\‘ [ o
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Acceleration, g

1", 096 m)

T i

Sl el "o
In collaboration with K. Rollins and D. Zekkos
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Field Testing and Case-Histories
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Enomoto and Sasaki (2015)

Centrifuge tests mimic the reality?

« Enomoto and Sasaki (2015) tried to mimic the flow slide of the high embankment
in the 2007 Noto-Hanto Earthquake using the geotechnical centrifuge.
« They could reproduce the similar deformation pattern using sand

with small fines content, which was different from the soil in the actual site.
» Suggesting that the cause of flow slide was different from the actual one.
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Levee on heterogeneous foundation

Major crack of 0.1 m wide Major crack of 0.2-0.3 m wide

0.1-0.15 m wide

Uniform sandy foundation Sandy foundation with
discontinuous less permeable silt layers

Maharjan and Takahashi (2014)
What centrifuge tests demonstrate?

« Maharjan and Takahashi (2014) demonstrated that accumulation of pore water
beneath the less permeable layer causes large shear strain there.
« Existence of less permeable layers leads to the larger lateral spreading

and excessive settlement in non-homogeneous foundation.

» Suggesting that ignorance of thin layers can underestimate the consequence.
40



Assumption and reality

Simplification in liquefaction-induced deformation analysis

Simplification in modelling of

soil layer(s) can result in

misunderstanding of cause Analysis with
] ] - simplified soil layer(s)
of failure mechanism. ——

» Overall response is the same, Real foundation composition

but actual cause can be different from reality. — e

Actual deformation pattern

What is missing?

Majority of the past liquefaction-induced severe damage of the actual earthwork
seems to have occurred due to localised shear deformation.

» Consideration of weak and/or less permeable layer in the ground.
» Such weak zone can be formed due to
deterioration of the soil in the long term?
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How weak zone can be formed?

Seepage-induced internal erosion © On.. Seepage flow

d 888:-00 s
- Suffusion: Qﬁ{*

Q
(&) O
. . . . . 20 ST
Internal migration of fines in coarser soil SoNe =
. 8;385‘352 Suffusion
« (Contact erosion: QIS
Migration of fines into coarse soil —— |Contact erosion
o L 0N 0LEHER
» Internal erosion increases void size and 008 Q2555 _
o O 3 o Coarse material
creates loose state of soil. by Q %
SO0 4 - Interface
""H'i'. .'.;. ; g'

" l'ug ...-,q ..... .
A ..“....t’.s i%e.  Fines

How and where internal erosion occurs?

* Internal erosion process should be examined.
« Horikoshi and Takahashi (2015) examined seepage-induced internal erosion
process in an embankment during the phases of initiation and continuation of

erosion through a series of physical model tests.
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How weak zone can be formed? (cont'd)

Modelled ——
' b Change in fines content
I )
| ' 2501
' :Embankmen
e Foundation 200+
g
E150
Supply Water =
Drainage Water F I -%0100 i
tank supply tank s
Model embankment
50
T
S 0
S
® 0 50 100 150 200 250 300 35(i 400
Seepage flow Decrease Distance from toe of slope (mm) Increase
315.0 70.0 p B , .
; ak -10 -8 -6 -4 -2 0 2 4 6 8 10
Steel box %
Unit: mm ( 0)

Drain outlet, net for gather fine fraction

Horikoshi & Takahashi, 2015

« Loss of fines develops backward along phreatic surface from downstream.

* Internal erosion forms weak zone around phreatic surface.
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How internal erosion deteriorates soil?

Impact on soil strength / stiffness?

* Mechanical behaviour of the internally eroded soils should be examined.
« Ke and Takahashi (2014) developed a triaxial internal erosion apparatus.
« Responses of the internally eroded soils in the triaxial compression
were investigated under both drained condition (Ke & Takahashi, 2015)
and undrained condition (Ouyang & Takahashi, 2016).

o
o

T T T
- —e—Specimen with 35% fines content

| —~—Specimen with 25% fines content
—&—Specimen with 15% fines content

e}
o

N
o

N
o

Percentage passing by weight .-(-%)
(2]
o

09)01

0. 1 O 1 1 10 (¢) Before erosion (25% inttial fines content) (b After erosion (23%% initial fines content)

Grain size (mm) Ouyang & Takahashi, 2016

» For the start, tests are conducted on gap-graded soils (initial FC = 25%)).
44



How internal erosion deteriorates soil? (cont'd)

= =
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Deviator stress (kPa)

Axial strain (%)
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—Eroded soil specimen
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Deviator stress (kPa)

40
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o
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| Larger initial
| stiffness

7

i Sudden drop

—Eroded soil specimen
—Spemmen W|thout er05|on

0

0.2 0.4 0 6 O 8 1
Axial strain (%)

Ke and Takahashi (2015)

Drained strength of eroded soil is obviously smaller than that without erosion.

In the seepage (internal erosion) stage, fines got impeded and accumulated

Tokyo Tech

at the contacting points of coarse particles, which might form local reinforcement.

» Stiffness of the eroded soil at the beginning of shearing is large.

» Due to deterioration of the reinforcement with the progress of shearing,

strength of the eroded soil becomes smaller than that without erosion.
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“RESIDUAL SHEAR
STRENGTH” CANNQOT BE
UNIQUELY CORRELATED TO
PENETRATION RESISTANCE

- AND WE SHOULD STOP
USING THE IDEA

Bruce L. Kutter
University of California, Davis
blkutter@ucdavis.edu



Mechanism of void redistribution (Kulasingam et al. 2004)
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Void Ratio

Kulasingam et al (2004)

0.9 [ R R RREERE 1 F )]
Steady State Line -
______ @) -
0.8 | =
| D,=30% ~ ¢ i
- R 0 ¢ -
L O -
0.7 g O Consi =°" lion State
. ¢ |® Stead 8 ate -
B © Initial R Ji State ) 7
L Dr=70% © | V| i
0.6

1 10

Effective Minor Principal Stress (kPa)

100 1000

Dr=30% - Sr/c’,,~ 0.05,
c',, =100 kPa = Sr=0.05*100 =5 kPa
P’ at Steady State Line is ~ 500kPa

10000

0.4 ——

0.3

0.1

|driss and Boulanger (2007).

-
T 0

T T T T T T T L — L —

- 1 'b .
! ’
| : J
B Recommended Curve i L4
— for conditions where —\\ ] "' a
void redistribution effects et ,
are expected to be negligible ‘l ,’
s ] ./
=] ! y
L ! ’ ]
i ;8 é . _
h -
! s’
| , / o i
L - i
- ," - \Recammended Curve |
" for conditions where
B P void redistribution effects |
= = could be significant

. » ) [ ] O ]
L °\° ° N
B See Fii 4 forL o

w1 |, [seerigurs ¢ or Logend]]
0 q? 5 10 15 20 25 30

ecralent Clean Sand SPT Corrected Blowcount, (N )., ..

Q: Why is residual strength so much lower than steady/critical
state strength?

A: Void redistribution (loosening), particle mixing.



Shaking causes pore pressure, then water flows upward

More shaking
causes more
softening.
Failure occurs
when dilatancy is
exhausted.

T

static

Sliding at critical stat%

/

cTVO

Stress path of the loosening layer



IT IS WRONG TO USE RESIDUAL STRENGTH FOR
DESIGN OF CRITICAL INFRASTRUCTURE

* |t is wrong to deduce the fully softened residual
strength by back-analysis of a failure.

* Void redistribution may cause continual loss of shear
resistance.

* Failure occurs when the critical state sliding resistance drops
to the sliding force; not when the sliding resistance is a
minimum.

* Flow failure, in general, will occur before the soil is fully
softened.

* The term “undrained residual strength” should not be
applied to flow failures

* there is no justification to the assumption that material in a
flow failure is undrained.

 Sliding resistance at failure is a “system parameter”, not a
“material strength”



PATH FORWARD

Instead of a strength-based assessment of stability, the approach
to the critical state may be figured out by calculating how much
water is being expelled by the zones of densification, and how
much of this water contributes to loosening of the failure
mechanism. We need:

e Realistic constitutive models

* Solution schemes that can predict strain softening, localization
of shear strains, and large deformations,

* Multi-physics modeling capabilities are needed to predict void
redistribution
* Water escape through cracks and boils
* Water accumulation in shear zones
» Stochastic models of stratigraphy and Monte Carlo simulation

Continued reliance on erroneous residual strength delays true
progress!



LEAP — Liquefaction Experiments
and Analysis Projects

* International effort to evaluate the accuracy of
existing models and calibration procedures used for
simulation of the effects of liquefaction.

 LEAP-UCD-2017 (tentatively December 2017) will involve
a sufficient number of experiments performed on a
variety of centrifuge facilities to demonstrate the
uncertainty and median response of a liquefiable layer
and to allow us to evaluate the sensitivity of the
response to key input parameters.

 Comparisons between numerical models and a group of
centrifuge model tests.
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U.S. — N.Z. — Japan International Workshop on

“Liquefaction—Induced Ground Movements Effects,”
Berkeley, CA 2-4 November 2016

Development and effects of liquefaction-induced flow
slides that are governed by the undrained residual
shear strength of liquefied soill

Absence of Residual Shear Strength
Case Histories for Medium Dense Solls

Presented by:

Leslie F. Harder, Jr.
HDR Engineering Inc.
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Looking Back: Recognition of Potential for
Void Ratio Redistribution

Hydraulic
\;radient

Upper , :
sand layer ¥ Silt seam

Walsr

interlayer Water film

sand layer B

initlal —_ - " " - - T T--——T—

Results of Shaking Table Tests on Deposit
Of StratiﬁEd Sand (after LiU and Qiao, FIG. 5. Photograph of Water Film Consisting of Clear Water
1984; as discussed by Seed, 1987) Formed beneath Silt Seam

from Kokusho (1999)




Current State-of-the-Art: Back-Calculation of 13
Residual Shear Strengths from Case Histories

SPT Correlations of S, or Normalized Values of S, /G, in Current Use
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Residual Strength, S, (atm)

Current State-of-the-Art: Back-Calculation of 13
Residual Shear Strengths from Case Histories

Hybrid Correlations between SPT Blowcount, S, , and 0, -
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Challenges: Limited Number of Case Histories

Group Case Seed and Harder (1990) Olson and Stark (2002) Wang (2003) + Kramer (2008) This Study
Sc(psf) | Nigocs |Sy(Lia) (psh) ™| Su(Lia)/S'so | O'vo (PST)| Nige® | S, (psN™ | S/ 0w | G (PsH™ | Nisoes | Sc(psf)| S 0o | 0o (ps)| Nisoes
Wachusett Dam - North Dike 334 0.106 3158 7 348 0.136 2559 7.3 294 0.094 3142 7.5
Fort Peck Dam 350 10 570 0.078 7341 8.5 671.6 0.091 7380 15.8 762 0.105 7258 12.5
Uetsu Railway Embankment 40 3 36 0.027 1280 3 43.7 0.048 910 2.9 38 0.026 1448 3
Lower San Fernando Dam - U/S Slope 400 13.5 390 0.120 3482 11.5 484.7 0.133 3644 14.5 539 0.170 3174 13.5
Hachiro-Gata Road Embankment 42 0.062 670 4.4 65 0.164 396 5.7 68 0.101 673 7
La Marquesa Dam - U/S Slope 200 6 [104] 0.114 911 4.5 (185.1) 0.110 1683 6.5 103 0.105 981 6.5
A La Marquesa Dam - D/S Slope 400 11 [152] 0.152 1000 9 (343.5) 0.186 1847 9.9 214 0.176 1215 10.5
La Palma Dam 200 4 [125] 0.158 789 3.5 (193.3) 0.123 1572 4.2 136 0.177 767 5
Lake Ackerman Highway Embankment 82 0.076 1076 3 98 0.114 860 4.8 107 0.118 909 35
Chonan Middle School [142] 0.127 1119 52 (178.7) 0.091 1964 6.4 141 0.137 1032 6.5
Soviet Tajik - May 1 Slide [334] 0.154 2170 7.6 (334.3) 0.082 4077 8.9 341 0.179 1907 10.5
Shibecha-Cho Embankement 117 0.086 1351 5.6 208.9 0.200 1045 5.6 224 0.158 1416 75
Route 272 at Higashiarekinai 100 0.097 1030 6.3 130.5 0.125 1044 8.5 138 0.107 1285 8
Zeeland - Vlietepolder [180] 0.075 2396 7.5 (226.0) 0.048 4708 8.5 156 0.063 2488 8
Sheffield Dam 75 6 [159] 0.111 1429 5 (100.0) 0.072 1389 8.2 138 0.106 1308 7
Helsinki Harbor [44] 0.084 522 6 (53.2) 0.060 887 5.9 48 0.057 846 6
Solfatara Canal Dike 50 4 [71] 0.114 624 4 (77.1) 0.063 1224 4.9 64 0.096 669 5
Lake Merced Bank 100 6 [205] 0.149 1372 7.5 (139.5) 0.106 1316 5.9 136 0.163 834 8.5
El Cobre Tailings Dam <40> 0.020 1946 0 (195.2) 0.020 9760 6.8 95 0.046 2075 2
Metoki Road Embankment [90] 0.103 875 2.6 (116.8) 0.044 2655 2 92 0.106 871 2.5
Hokkaido Tailings Dam [138] 0.100 1376 1.1 (250.6) 0.074 3386 5.1 131 0.109 1203 4
Upper San Fernando Dam - D/S Slope 600 15 726 0.231 3138 15
B Tar Island Dyke [401] 0.093 4300 7 (364.2) 0.058 6279 8.9 516 0.123 4197 11
. S . [207] 0.165 1251 2.7 (158.9) 0.091 1746 8.9
Mochi-Koshi Tailings Dam, Dikes 1 and 2 250 5 [180] 0165 1090 57 (233.6) 0.081 2884 10 211 0.138 1532 6
. [44] 0.071 616 8.7
Nerlerk Embankment, Slides 1,2 and 3 50] 0.077 850 | 72 | (1785) | 0.1239 1440 114 68 0.058 | 1171 75
[52] 0.056 925 7.2
Asele Road Embankment [192] 0.153 1251 7 (163.6) 0.104 1573 11 137 0.132 1037 9.5
Nalband Railway Embankment [121] 0.110 1101 9.2 (139.9) 0.109 1283 6.3 167 0.138 1209 7.5
Sullivan Tailings 277 0.114 2422 9.5
Jamuna Bridge 175 0.125 1404 10.5
c | Calaveras Dam 650 12 721 0112 | 6422 | 8 636.9 0009 | 6433 | 105 749 | o106 | voe7 | 15
Notes : (1) Where noted in brackets, S,(Liq) and S,(Liq)/a",, for Olson (2001) reinterpreted using reported values of Su Yield and S, Residual in Olson (2001) and the equation S (Liq) = 0.8 (S, Yield + S, Residual)/2.

Reinterpretation of S,(Liq) performed for cases not calculated using the Kinetic procedure in Olson (2001). Where noted in triangular brackets, no S , Yield value reported in Olson (2001).

(2) No fines content correction utilized in Olson and Stark (2002).
(3) Where noted in parentheses, S, values are for secondary cases in Wang (2003) and were not fully reanalyzed.
(4) &', not explicitly reported in Wang (2003) or Kramer (2008). Values shown were back calculated from reported S, and S,/d',,.

from Weber (2015)




Current State-of-the-Art: Back-Calculation of 13
Residual Shear Strengths from Case Histories
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Liqguefaction Triggering Relationships Looked at

Both Liquefied and Non-Liquefied Case Historires
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Paths Forward

1. Recognize Bias in current State-of-the-Art.

2. Investigate medium dense soils under sloping
ground conditions following strong seismic events.

3. Current liquefaction triggering correlations indicate
that sandy soils with SPT blowcounts between 15
and 25 can be triggered to liquefy if the ground
shaking is strong enough.

4. Look for such soils/sloping ground conditions,
especially if the slopes performed well.

5. Learn from what worked, not from
what did not.
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