LIQUEFACTION-INDUCED LATERAL SPREADING & ITS EFFECTS ON STRUCTURES & LIFELINES

FF

- Ground Movements
 Next Gen
- Geologic Controls

- Next Generation Pipelines
- Pipeline System Performance

PEEF

- Soil/Pipeline Interaction
 B
- Best Path Forward

TOPICS

NSF LIQUEFACTION WORKSHOP

COUPLED LATERAL AND VERTICAL GROUND DEFORMATION

- Liquefcation-induced lateral soil movement is generally accompanied by vertical movement
- Need to identify & quantify coupling mechanisms between lateral and vertical movement.

GEOLOGIC CONTROLS ON LIQUEFACTION-INDUCED GROUND DEFORMATION

- Geomorphology
- Stratigraphy
- Topography

(Cubrinovski & Robinson, 2015)

GEOLOGIC CONTROLS ON LIQUEFACTION-INDUCED GROUND DEFORMATION

GEOLOGIC CONTROLS ON LIQUEFACTION-INDUCED GROUND DEFORMATION

FEF

EXTREME SOIL-PIPELINE INTERACTION

Geometric

- Earthquakes
- Hurricanes and Floods
- Landslides: Aerial and Submarine
- Tunneling and Deep **Excavations**
- Subsidence

Pipeline Material & Geometric **Nonlinearities**

NSF LIQUEFACTION WORKSHOP

PEEF

SOIL-PIPELINE INTERACTION

- Nonlinear Interaction Relationships Calibrated by Full-Scale Experiments
- Can Replicate
 Complex Interactions
 in Pipe & Soil
- 3-D Continuum Modeling Evolving; Still Challenges

EE

SOIL-PIPELINE INTERACTION MODELS

NEXT GENERATION HAZARD-RESILIENT PIPELINES

PEER

LARGE-SCALE TESTING: NEXT GENERATION INFASTRUCTURE

ORIENTED POLYVINYL CHLORIDE (PVCO) JOINTS

PEEF

NSF LIQUEFACTION WORKSHOP

LESSONS: NEXT GENERATION (HAZARD-RESILIENT) PIPELINES

- Paradigm Shift in Pipeline Technology
- Market-Driven Research Funded by Industry
- Can't Have Resilience Unless You Have a Market
- •Next Generation Hazard-Resilient Pipeline Simulation Models

NO HIPEER

LIGHT DETECTION & RANGING (LIDAR)

- High Resolution
 LiDAR
 Measurements
- Settlement on 5-m
- Lateral
 - Movement
 - on 4 & 56-m

GROUND DEFORMATION METRICS

• From Boscardin & Cording (1989) for Building Damage:

MAXIMUM PRINCIPAL LATERAL STRAIN

 Create Bilinear Quadrilateral **Finite Element** from Lateral **Displacements** at Grid Corners to Determine **Principal Strain**

PEER

REPAIR RATE FOR COMBINED ANGULAR DISTORTION AND LATERAL STRAIN

Asbestos Cement (AC) Pipelines

THERMALLY WELDED PE VS CONVENTIONAL JOINTED PIPELINE SYSTEMS

SYSTEMS PERFORMANCE EVALUATION

BEST PATH FORWARD

- Evaluation of Well Documented Case Histories
- Physical Modeling and Experiments Using Large-Scale Testing and Centrifuge Facilities
- Development of Numerical Models for Soil-Pipeline and Soil-Tunnel Interaction Validated by Large-Scale & Centrifuge Testing As Well As Case History Data
- Development of Network Models to Simulate System Performance

PEEF

NSF LIQUEFACTION WORKSHOP