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Inference spiral of science
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How to prevent diminishing returns?
Exponential increase in field observational data [more Eqgs(?), better reconniassance(?)]

1. Improved model formulations (more physics) that allow greater utilization of
observations and better assimilation of field, laboratory, and numerical modelling

2. More robust validation (how well do current models actually perform in a 'blind'
prospective sense)

3. Understanding uncertainties as a means to identify fruitful areas to concentrate effort
(and as a by-product provide predictions with explicit uncertainty estimates)
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Modelling progression

1. Purely empirical functional
form (no mechanics basis)

Required
education

2. Semi-empirical (Part 1)
[polynomial has physics
considerations (albiet
oversimplified) ]

Differentiation
ability

3. Semi-empirical (Part 2)
[Physical insights from other
exp/numerical models used to

help extrapolate beyond field
observation data]

Time
4. Physics-based model

[Mechanical model (w spatial
uncertainties)]. Observations

used to infer parameters and
constitutive relations



Physics-based modelling ) | QuakeCoRe
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 Empirical liguefaction-induced impact models are tied
directly to factor of safety approach used for
triggering analyses
Seismic hazard loading
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* Inputs: Ground motion simulation ~: Velocity (NS direction)

methods are now able to provide PGV =53.9
CBGS Observed
Simulated

seismic hazard directly in the
PGV =241

form of acceleration time series

* How to utilize this within empirical
liquefaction impact models?
(simply PGA and Mw?)

—% Observed
e [e.g. we know that Mw alone is a B
poor proxy for number of cycles ﬂW‘W‘*" Sk
(being also a function of distance - S (ar )
and deep basin conditions)] sec

0 10 20 30 40 50 60 70 80

i USing a(t) direCtly? ground velocity (cm/s)



Physics-based modelling ) QuakeCoR

Soil element constitutive behaviour

e Modelled directly (.... although we need more test
data under complex/realistic loading conditions)

Modelling system (layer) interactions

e Demand: How dynamic and constitutive response
of soil elements modifies the transmitted ground
motion to other soil elements in the system

e Capacity: Void redistribution and geometric
nonlinearities



Physics-based modelling ) QuakeCoR

Pros:

-Governing mechanics

-Develop an understanding of the problem
-'Extrapolation' to cases of interest is
physically based

-A clear framework in which field,
laboratory and numerical observations
and insights can be integrated

-Simulations represent actual sensitivity of
reality (?)

Hinderances: ((\e“
. c\V

-Methods to determ,l&ép@é?neters often

not well defined B€

-Simulations too sensitive to inputs

-Only the person who developed the . ¢\
. \O

model(s) can use it a\'\d'a

-Validation is often bias \kgg'ta}hse analyst

is model developer RO



Validation () QuakeCore

e Unit problems (e.g. lab element tests) -> Complete system
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Validation ) | QuakeCoR

e Unit problems (e.g. lab element tests) -> Complete system
e Recognition of extrapolation inherent in prediction
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e Transparency and reproducibility of validation:
Usually (apparent) validation performed by the same people who are proponents (and
often developers) of the numerical tools used

e Open-source validation datasets (e.g. NGL)

e Multi-year and multi-investigator validation initiatives (e.g. LEAP)
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Uncertainties

e Explicit consideration of uncertainties lags behind engineering seismology and
structural earthquake engineering

e Consideration of uncertainties is critical to:
e Transparent predictive precision of model
e |dentify principal sensitivities in problem <- places for further research
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(a) Site characterization; (b) constitutive parameters;
(c) constitutive models; (d) model methodology
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