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Session I Schedule

9:15    Invited Presentations
Steve Kramer University of Washington
Roland Orense University of Auckland
Y. Tsukamoto Tokyo University of Science
Ross Boulanger U.C. Davis

10:15   Additional Presentations
Scott Olson University of Illinois
Gabriele Chiaro University of Canterbury
Adda Athanasopoulos-Zekkos University of Michigan
Akihiro Takahashi Tokyo Institute of Technology
Bruce Kutter U.C. Davis
Les Harder HDR, Inc.

10:45   Break

11:15   Discussions of identified key challenges/issues

12:45   Lunch



Residual Strength of Liquefied Soil

Steve Kramer
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Steady state ???
Stress-strain and stress path behavior - Castro (1969)

Steady state strength, Ssu, is 
function of density alone



Normalized strength concept
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If consolidation curve is parallel to 
SSL, then Ssu is proportional to σ’vo.  
If so, then 

Ssu/σ’vo = constant
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Constant state parameter
Constant level of contractivness
Steady state strength increases at same rate 
as effective stress



Normalized strength concept
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Normalized strength concept

Typical behavior

Negative state parameter  dilation

Increasingly positive state 
parameter  increasing 
contractiveness

State parameter increases with 
increasing effective stress
Steady state strength doesn’t 
increase as quickly as effective 
stress



Laboratory-Based Approach

Common laboratory tests
Triaxial test
Simple Shear test
Ring Shear test

All have limited ability to achieve strains large enough to reach 
steady state of deformation:

- Stresses are nonuniform, unknown
- Strains are nonuniform, unknown

Resulting strengths are questionable



Laboratory-Based Approach
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Steady state???



Ring Simple Shear Device (RSSD)

University of Washington

Inner
rings

Outer
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Effects of Specimen Preparation

Small strain 
behavior very 

different

Large strain 
behavior similar



Back-calculated residual strength

Original approach
Based on soil mechanics
Accounts for dilation at low confining pressures
Predicts same residual strength for same density

Sr = 0.04 – 0.25 atm



Back-calculated residual strength

Original approach
Based on soil mechanics
Accounts for dilation at low confining pressures
Predicts same residual strength for same density

Normalized strength approach
Recognizes increased density with depth 
Predicts high residual strength 

at great depths
Can predict very low residual 

strength at shallow depths,
even for relatively high 
blowcount material

High blowcounts, 
low strength



Back-calculated residual strength

Newer approaches
Based on soil mechanics
Recognize increased density with depth 
Recognize increasing contractiveness with depth
Account for lateral spreading at low confining pressures

Kramer and Wang (2015)

Weber (2016)



Back-calculated residual strength - Newer approach

Comparison of predicted strengths

Higher strengths at low 
confining pressures

Similar strengths at intermediate 
confining pressures

Lower strengths at high 
confining pressures

Kramer-Wang



Issues in Residual Strength Model Development and Application

Definition of residual strength
Ultimate vs. quasi-steady state
Stress path effects
Soil fabric effects

Initial stress effects
None
Linear dependence (proportionality)
Nonlinear dependence (non-proportionality)

Dynamic effects
Inertial effects influence final displacements
Viscosity of liquefied soil



Issues in Residual Strength Model Development and Application

Effects of fines content

Flow slide case history investigation/documentation
Variable quantity of available information
Variable quality of available information
Characterization of uncertainty

In input parameters
In predicted residual strengths

Selection of penetration resistance

Void redistribution effects

Effects of mixing and hydroplaning

Extrapolation beyond bounds of data
Denser soils
Greater depths
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