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βKαMC  Damping is commonly represented as a linear 
combination of mass and stiffness matrices
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numerical integration methods
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HS Background

A straightforward integration application: Explicit Newmark Integration
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HS Background

A straightforward integration application: Explicit Newmark Integration
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 Slow Hybrid Simulation

 Real-time Hybrid Simulation

 Actuator Configuration

 Shaking Table Configuration

 Actuator + Shaking Table Configuration

HS Classification
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 Slow Hybrid Simulation

HS Classification

 Rate of loading < Computed velocity

 Duration of hybrid simulation > NΔt
N: number of integration steps
Δt: integration time step

 Applicable when rate effects are not 
important

 Experimental substructure is connected 
to actuator(s)

 Physical mass generally doesn’t exist

u2

u1

m2

m1
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From the experimental 
perspective, slow hybrid simulation 
is equivalent to quasi-static testing

13

Controller

Test Specimen

Quasi-static 
testing: 

Predetermined 
displacement 
commands

HS Classification

Predetermined displacement 
commands are based on a load 
protocol



From the experimental 
perspective, slow hybrid simulation 
is equivalent to quasi-static testing
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 Real-time Hybrid Simulation (Actuator Configuration)

HS Classification

 Rate of loading = Computed velocity

 Duration of hybrid simulation = NΔt
N: number of integration steps
Δt: integration time step

 Crucial when rate effects are important

 Experimental substructure is connected 
to actuator(s)

 Physical mass generally doesn’t exist

u2

u1

m2

m1
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Same quasi-static test setup can be 
used for real-time HS as long as 
proper hardware exists, e.g. dynamic 
actuators, digital controllers, etc.
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 Real-time Hybrid Simulation (Shaking Table Configuration)

HS Classification

 Experimental substructure is located on 
a shaking table

 Physical mass generally exists

 Rate of loading = Computed velocity

 Duration of hybrid simulation = NΔt
N: number of integration steps
Δt: integration time step

 Crucial when rate effects are important
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Uniaxial shaking 
table

Test specimen: 
Insulator post

Controller

DAQ 

18

Predetermined Command 
displacements

HS Classification

From the experimental perspective, 
RTHS in a shaking table configuration 
is equivalent to conventional shaking 
table testing



Uniaxial shaking 
table

Test specimen: 
Insulator post

Controller

DAQ & Computational platform (DSP)
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Step 1 (Computations)

Step 2 (Computed displacements)

Step 3 (Command displacements)

Step 4 (Force feedback)

HS Classification

From the experimental perspective, 
RTHS in a shaking table configuration 
is equivalent to conventional shaking 
table testing



 Real-time Hybrid Simulation (Actuator + Shaking Table Configuration)

HS Classification

 Experimental substructure is located on a shaking table and connected to an actuator
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Benefits of HS
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Convenience in mass modeling

Shaking Table
Hybrid Simulation
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Convenience in system level testing



Benefits of HS
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Convenience in mass modeling



Benefits of HS
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Convenience in full scale testing



Benefits of HS
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Time efficiency due to elimination of physical construction

≡ +
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Experimental
substructure Details in the 

HS 
application 
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Benefits of HS
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 Nature of the problem requires substructuring
 Presence of experimental substructures require the use of special integration methods
 Presence of a transfer system introduce simulation errors
 Rate dependent materials require real-time hybrid simulation (RTHS)
 Making use of multiple labs extend the method to geographically distributed testing

Benefits of HS
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40 years of 
extensive research 
on various aspects 

of Hybrid Simulation



Substructuring Cases
CASE 1: CANTILEVER COLUMN with MASS [No MASS 
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Substructuring Cases
CASE 2: CANTILEVER COLUMN with MASS and MASS 
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Substructuring Cases
CASE 3: TWO COLUMNS without ANALYTICAL 
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Substructuring Cases
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Substructuring Cases
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Spring with a lateral force-
deformation relation
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Substructuring Cases
CASE 5: PORTAL FRAME with ONE OF THE COLUMNS 
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Substructuring Cases
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Substructuring Cases
CASE 6-1: MULTI-BAY MULTI-STORY FRAME with 
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Integration Methods

Analytical 
Simulation

Experimental 
Simulation+ = Hybrid

Simulation

All the integration methods developed for analytical 
simulations are not suitable for hybrid simulation

46

Example: The most common and standard 
integration method for analytical simulation, 
Implicit Newmark Integration



Implicit Newmark Integration
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Equilibrium equation

Difference 
equations

Equilibrium and difference equations represent a nonlinear system 
of equations, 
which can be solved using iterative methods such as Newton-
Raphson method
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Iterations of Implicit Newmark are not suitable for hybrid simulation:
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 Nonuniform displacement increments: velocity and acceleration oscillations within the step

δ

 Displacement overshoot: artificial unloading
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A B

 Iterations may not converge
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Integration Methods



HS compatible alternative integrators

 Explicit Newmark Integration

 Operator Splitting Method

 Implicit Newmark Integration with Fixed Number of Iterations

49

Integration Methods

Do not require iterations



Simulation Errors
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 Reliability of a hybrid simulation depends on the accuracy of fe

 All the errors that occur during stages 1 and 2 are experimental
errors and affect hybrid simulation



Simulation Errors

 They have no distinguishable pattern and generally no specific physical
effects can be anticipated.

 Examples:
1. Random electrical noise in wires and electronic systems
2. Random rounding-off or truncation in the A/D conversion of electrical signals  

 They do not introduce significant errors to hybrid simulation.

Random errors:  

51

Random errors  

Systematic errors  
Experimental

errors  



Simulation Errors

 They may lead to error propagation and numerical instability
 Examples:

1. Measurement errors
2. Hybrid simulation technique (ramp and hold, continuous, real-time)
3. Servo-hydraulic closed control loop

Experimental systematic errors:

1. Measurement errors
 Errors in load cells & displacement transducers of actuators due to:
a. Calibration
b. Friction or slop in the attachments
c. A/D and D/A conversions

52



Simulation Errors

Command Overshoot

Measured 
force

Increased 
Damping

Overshooting

Displacement

Restoring 
Force

Restoring 
Force

Displacement

Negative 
Damping &
Instability

Undershooting or Delay

Displacement

Restoring 
Force

Control-loop errors (Errors in displacement tracking): Demonstration
of the effect of control-loop errors
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Simulation Errors
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T = 0.5 sec
 = 5%

Control-loop errors: Demonstration tests
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T = 0.5 sec
 = 5%

Control-loop errors: Demonstration tests
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Control-loop errors: Demonstration tests
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14 msec time delay
introduced artificially 
by adjusting the 
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Simulation Errors
Control loop errors: Error identification using free vibration

Step 2: Run the free vibration hybrid simulation test from this 
displaced configuration

Step 1: Push the hybrid structure, generally in the first mode, to 
a displacement within the linear range
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Methods to Reduce the Effects of Errors

 Error Compensation Methods

 Integration Methods with Numerical Damping

 Tuning

 Advanced Control Methods

Simulation Errors
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HS Related Research
Geographically Distributed HS

Lab 1 in The Americas Lab 2 in Asia

Lab 3 in Europe Lab 4 in Australia

Computations 
in Berkeley



Geographically Distributed HS
Geographically distributed HS test between 
nees@berkeley and UNIKA, Germany

Experimental substructure: 
Friction device and a fixed 
tuned-mass-damper @UNIKA 

Analytical substructure: 
SDOF mass with viscous 
damping @Berkeley 

nees@berkeley 
Control room

62

OpenFresco: The Open-source 
Framework for Experimental 
Setup and Control 
http://openfresco.berkeley.edu/



Real-time Hybrid Simulation (RTHS)

 Requirement for real time:

Loading rate = Computed velocity

 Slow HS: Sufficient for most cases when rate effects are not important.

 RTHS: Essential for rate-dependent materials and devices, e.g. viscous
dampers, friction pendulum isolators or polymer insulators.
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Use of HS for Testing of 
Electrical Equipment
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Disconnect 
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Disconnect 
switch

Insulator

Courtesy of Eric Fujisaki, PG&E

 Electrical equipment in substations are typically mounted on support structures to provide sufficient
clearance of the ground, and to integrate them into the design of the substation.

 Support structures are generally steel frames with well defined geometry and material
properties. Therefore they are suitable to be modeled in the computer as analytical substructure.

 Electrical equipment generally have complex geometry and material properties with larger
uncertainty.

 HS provides an effective, efficient and economic testing opportunity by combining the electrical
equipment testing with support structure modeling.
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3D 
support 
structure

Disconnect 
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2D support 
structure

Disconnect 
switch

Insulator

Courtesy of Eric Fujisaki, PG&E

 HS provides an effective, efficient and economic testing opportunity by testing of the electrical
equipment and modeling of the support structures.

1. Application I: Evaluation of the Effect of Support Structure Stiffness and Damping 
on Porcelain and Polymer Insulators

2. Application II: Full Disconnect Switch Tests in Open and Closed Configurations
3. Application III: Testing of Interconnected Equipment



Thank you!


