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@design of new joints
#existing joint details
#failure of existing joints in earthquakes

#general response characteristics
#importance of including joint deformations
#®stiffness

#strength

#®deformation capacity

#axial failure




Special Moment-Resisting Frames
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Joint demands
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Joint geometry

(ACT Committee 352)
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Joint shear strength
- code-conforming joints -
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Joint Details - Interior
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Joint Details - Corner
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Older-type beam-column connections
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Survey of existing buildings

L/

N

o w et S s - PP - o - “ne Ltam TR " wan
oe a‘.ﬂ e -3-3- ﬁ\\?w E.mV' L] E. E.m\w‘v' % e L] Ve --‘yﬁf --?a‘u " m%
(LA n - I ra BT 4
U v o s . E L [P AN -
* BT = w "t el n ) AM- '
Ao’y Cmen Boenlorwl e,

&
gl A gl

At . A RS
s \'.’V' .minl

Sarrge duwal oo

W e

W e

Crs nss Avnraepn Crereerlnte w3 LY AT 1 ey

v

e w
~ .- "t
v u e -

va

Lox’e Uome AL X N L

.~ ’-M - R . - . A ’.M
-'ﬁm..a e S ~ e s Y hp --'KE..- v

iy
i

Sarmgn o rlne:
y. "' n. e
W e,

Mosier




Joint failures




Studies of older-type joints
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Damage progression
Interior connections
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Effect of load history

Interior connections
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Damage at 5% drift
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Contributions to drift

Interior connections
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Evaluation of FEMA-356 Model
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Joint panel deformations
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Joint shear stiffness
Interior connections
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Joint strength

effect of beam yielding A |
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e Joint strength closely linked to beam flexural strength
e Plastic deformation capacity higher for lower joint shear




Joint strength

interior connections - lower/upper bounds
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Joint strength

interior connections
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Plastic drift capacity

Interior connections
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Note: the plastic drift angle includes inelastic deformations of the beams




Damage progression
exterior connections
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Joint behavior
exterior connections
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Plastic drift capacity
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Exterior joint
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Interior joints with
discontinuous bars
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Unreinforced Joint Strength
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FEMA 356 specifies the following:

V,=y+.Dh - No new data. Probably still valid.
joint
geometry Y  Assuming bars are anchored in
joint, strength limited by strength of

4 framing members, with upper-
bound of y= 15. For 15 =2 y = 4,

6 joint failure may occur after
inelastic response. For y <4, joint
unlikely to fail.

8

* Assuming bars are anchored in

joint, strength limited by strength of
10 framing members, with upper
bound of y = 25. For25= y= 8,

—
I_
'I(_
-
-

joint failure may occur after
inelastic response. For y < 8, joint
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unlikely to fail.




Joint failure?
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Joint failure?
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Joint test summary
axial failures identified
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Suggested envelope relation
interior connections with continuous beam bars
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stiffness based on effective

R ’<—>‘ stiffness to yield
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Note: the plastic drift angle includes inelastic deformations of the beams




Suggested envelope relation
exterior connections with hooked beam bars
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this model
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xial-load stability unknown,
specially under high axial loads

Note: the plastic drift angle includes inelastic deformations of the beams




Joint panel deformations
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Methods of Repair (MOR)
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steel, remove and replace
concrete, and replace finishes

Method of Activities Damage
Repair States

0. Cosmetic Replace and repair finishes 0-2

Repair

1. Epoxy Injection | Inject cracks with epoxy and 3-5
replace finishes

2. Patching Patch spalled concrete, epoxy 6-8
inject cracks and replace
finishes

3. Replace Remove and replace damaged 0-11

concrete concrete, replace finishes

4. Replace joint Replace damaged reinforcing 12




Interior joint fragility relations
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