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Outline
design of new joints
existing joint details
failure of existing joints in earthquakes
general response characteristics
importance of including joint deformations
stiffness
strength
deformation capacity
axial failure



Special Moment-Resisting Frames
- Design intent -
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For seismic design,
beam yielding
defines demands



Joint demands

(a) moments, shears, axial
loads acting on joint

(c) joint shear
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Joint geometry
(ACI Committee 352)

a) Interior
A.1

c) Corner 
A.3

b) Exterior 
A.2

d) Roof
 Interior B.1

e) Roof 
Exterior B.2

f) Roof
Corner B.3

ACI 352
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Values of γ  (ACI 352)

Joint shear strength
- code-conforming joints -
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Joint Details - Interior

hcol ≥ 20db

ACI 352



Joint Details - Corner
≥ ldh

ACI 352



Code-conforming joints



Older-type beam-column connections



Survey of existing buildings
 

Mosier



Joint failures



Studies of older-type joints

Lehman
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Damage progression
interior connections
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Effect of load history
interior connections
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Standard Loading Impulsive Loading

Damage at 5% drift
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Contributions to drift
interior connections

“Joints shall be modeled
as either stiff or rigid
components.” (FEMA 356)
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Evaluation of FEMA-356 Model
interior connections
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Joint panel deformations

Joint Deformation
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interior connections
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Joint strength
effect of beam yielding
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• Joint strength closely linked to beam flexural strength
• Plastic deformation capacity higher for lower joint shear
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Joint strength
interior connections - lower/upper bounds

/fc’
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Joint strength
interior connections
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Joint deformability
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Plastic drift capacity
interior connections
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Damage progression
exterior connections

Pantelides, 2002



Joint behavior
exterior connections

2 Clyde
6 Clyde
4 Clyde
5 Clyde

 5 Pantelides
 6 Pantelides
 6 Hakuto
 Priestley longitudinal
 Priestley transverse
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Plastic drift capacity
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Exterior joint
hook detail

hook bent into joint

hook bent out of joint



Interior joints with
discontinuous bars
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shear,
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• Assuming bars are anchored in
joint, strength limited by strength of
framing members, with upper
bound of γ ≈ 25. For 25 ≥ γ ≥  8,
joint failure may occur after
inelastic response. For γ  ≤ 8, joint
unlikely to fail.

Unreinforced Joint Strength
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FEMA 356 specifies the following:

• No new data. Probably still valid.

• Assuming bars are anchored in
joint, strength limited by strength of
framing members, with upper-
bound of γ ≈ 15. For 15 ≥ γ ≥  4,
joint failure may occur after
inelastic response. For γ  ≤ 4, joint
unlikely to fail.



Joint failure?
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Joint failure?

Drift at “tensile failure”

Drift at “axial failure”
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Drift at “lateral failure”
Priestley, 1994
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Suggested envelope relation
interior connections with continuous beam bars
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axial-load stability unknown,
especially under high axial loads

Suggested envelope relation
exterior connections with hooked beam bars
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Joint panel deformations

Joint Deformation



Methods of Repair (MOR)

12Replace damaged reinforcing
steel, remove and replace
concrete, and replace finishes

4. Replace joint

9-11Remove and replace damaged
concrete, replace finishes

3. Replace
concrete

6-8Patch spalled concrete, epoxy
inject cracks and replace
finishes

2. Patching

3-5Inject cracks with epoxy and
replace finishes

1. Epoxy Injection

0-2Replace and repair finishes0. Cosmetic
Repair

Damage
States

ActivitiesMethod of
Repair

Pagni



Interior joint fragility relations
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Epoxy injection
Patching
Replace concrete
Replace joint
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