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Seismic assessment/upgrading
through mid-1990s (FEMA 178)



Checklist to identify critical
deficiencies
Detailed requirements for
condition assessment
Performance approach
 Performance objectives
 Seismic hazard characterization
 Nonlinear, displacement-based

analysis
 Detailed acceptance criteria

Seismic assessment/upgrading since
mid-1990s (FEMA 273)
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Performance objectives
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Seismic hazard
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Design response spectra
general approach (shown) or site-specific
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upgraded structure
displacement demand

existing structure
displacement demand

upgraded structure

b

column axial
load demand

Vertical
Load

Drift

axial capacity curve

axial failure

a Drift

Lateral
Load existing structure

lateral failure

Nonlinear analysis model/
upgrading concept

existing
column

new wall
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Global Model

Global displacement, δ

EQ effect

Force

Deformation
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Acceptance Criteria Component Tests

    

di

qi

dj

qj

Component Model

Modeling, analysis, and
acceptance



Stiff/Strong Foundation

Small displace-
ments protect 
frame from 
damage

High forces
cause shear
wall damage

 
 

Δ small

Flexible/Weak Foundation

Large
displacements
cause frame
damage

Foundation
yielding and
rocking protects
shear wall

 
 

 Δ large

Foundation modeling
(a) Foundation deformations (b) Modified input

• “slab” averaging
• embedment
• damping



Free field motion

Site plan
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Foundation input motion

Site plan

Building footprint
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Slab averaging
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FEMA 440



Embedment effect

Ground
surfaceBuilding

Input
ground
motion
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Foundation (radiation) damping

Ground surface Building

Some
energy is
dissipated

FEMA 440



pushover curve

ΔT = Target Displacement

Te

Tsecant

Displacement

Acceleration

5%-damped
spectrum spectrum reduced for 

equivalent damping

Displacement demand –
Equivalent linearization (formerly capacity-spectrum)

General concept shown below.  See FEMA 440 for details.



C3 = amplification due to dynamic P-Δ effects
replaced by minimum strength requirement

Co = converts SDOF spectral displacement to MDOF
roof displacement

Elastic roof displacement
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Two types of strength degradation

 
 

Strength  and st iffne ss degrading model
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Strength loss between cycles

Cyclic strength degradation In-cycle strength degradation

Strength loss during cycles
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Strength  and st iffne ss degrading model
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Two types of strength degradation



Test observations

(a) 1985 Chile record (b) 1995 Kobe record
Shin, PEER, 2005
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Strength, strength degradation, and
instability

FEMA 440
recommends
maximum value for
R as function of αe.
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Construction of load-displacement relation
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Construction of load-displacement relation
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Roof Displacement
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Minimum strength

Displacement

Base shear
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Global Model

Global displacement, δ

EQ effect

Force

Deformation

A
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Life Safety limit

Acceptance Criteria Component Tests
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acceptance



Component strength
(example, column shear strength)
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Component deformation capacity
(example, columns controlled by flexure)
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Component deformation capacity
(example, columns controlled by flexure)
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Acceptance Criteria Component Tests

Some shortcomings
insufficient data, deterministic procedures

Sezen, 2004



Some shortcomings
static versus dynamic response

Regular—0.5 % Regular—4 %

Median Multimode
SRSS
Adaptive

Code
Rectangular
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Some shortcomings
- Component-based

When the first component gets to LS
performance level, the whole building is
defined to be at that level.



Stiff/Strong Foundation

Small displace-
ments protect 
frame from 
damage

High forces
cause shear
wall damage

 
 

Δ small

Flexible/Weak Foundation

Large
displacements
cause frame
damage

Foundation
yielding and
rocking protects
shear wall

 
 

 Δ large

Some shortcomings
results can be sensitive to assumptions

ATC 40



Example:  Escondido Village
Midrises

• 1961-64 construction
• 8 stories tall
• Vertical system

• columns
• bearing walls

• Lateral system
• walls controlled by
flexure

• Foundation
• spread footings

• Deficiencies
• shear-critical columns
• inadequate boundary
steel in walls
• punching at slab-
column connection

Comartin



Typical Floor Plan
D
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Structural analysis
and retrofit approach  
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Capacity curve
after retrofit

Displacement
Demand

 
 

Column shear
failures

Capacity curve before
retrofitShear wall

boundary splice
failure

Floor beam
shear failures

Various
upgrading
measures
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Boundary Steel
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Column Collars and Fiber Wrap

Comartin



Older RC building performance
ratings - a case study



Retrofitted buildings
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