Multidirectional Hybrid Simulation Tests at Polytechnique Montreal: System, Challenges and Applications

Martin Leclerc, Robert Tremblay, Najib Bouaanani, Youness Mechmachi, Ali Imanpour, Yasaman Balazadeh-Minouei Polytechnique Montreal, Canada

Hybrid Simulation Technologies & Methods for Civil Engineering MTS / UC Berkeley March 20-21, 2018

Plan

- 1. MDHTS System
- 2. Challenges:
 - 1. System stiffness
 - 2. Friction in actuator's swivels
 - 3. Measurements precision
- 3. Applications
- 4. Conclusions

Laboratory at Polytechnique Montreal

MDHTS

4 - 1000 kN Actuators

Upper Platen

4 - 2000 kN Actuators

MDHTS

- Manufacturer: MTS Corporation
- Full 6 DOF control (X, Y, Z, θ_X , θ_Y , θ_Z)
 - Mixed mode of displacement/force control
- Multi-axis testing of substructures
 - quasi-static (cyclic)
 - Pseudo-dynamic testing
 - Hybrid Testing
- 2 Two displacement feedback signals:
 - Absolute referencing (from actuator displacement)
 - Relative referencing (from transducer's readings)
- 2 Hybrid configurations:
 - ScramNet (Matlab, Simulink & xPC Target)
 - CSI (MTS)

MDHTS

Total System Capacity	
Vertical Force, Fz	4 x ±1800 kN (±7200 kN)
Horizontal Force, Fx & Fy	2 x ±1000 kN (±2000 kN)
Vertical Displacement, Z	±300mm
Horizontal Displacement, X & Y	±375mm
Rotation in swivels (all)	±7 deg (±0.122 rad)
Maximum moment X-X	 +/- 2 x 1800 kN x 3 m = ±10800 kN-m From Horizontal actuators +/- 2 x 1000 kN x 4.73 m = ±9460 (Y-actuators at 4 m elevation) +/- 2 x 1000 kN x 9.23 m = ±18460 kN-m (Y-actuators at 8 m elevation) Combined ±20260 to ±29260 kN-m
Maximum Moment Y-Y	 +/- 2 x 1800 kN x 2 m = ±7200 kN-m From Horizontal actuators +/- 2 x 1000 kN x 4.73 m = ±9460 (X-actuators at 4 m elevation) +/- 2 x 1000 kN x 9.23 m = ±18460 kN-m (X-actuators at 8 m elevation) Combined ±16660 to ±25660 kN-m
Maximum Moment Z-Z	+/- (1000 kN x 2 m + 1000 kN * 3 m) = ±5000 kN-m

Plan

- 1. MDHTS System
- 2. Challenges:
 - 1. System stiffness
 - 2. Friction in actuator's swivels
 - 3. Measurements precision
- 3. Applications
- 4. Conclusions

Control on specimen's displacements only (relative displacement)

At Control Point: Forces: From Actuators Load Cells

Displacements: From Actuators LVDTs & 8 Local Transducers

Metrology-grade scanners used to locate encoders in 3D space

Plan

- 1. MDHTS System
- 2. Challenges:
 - 1. System stiffness
 - 2. Friction in actuator's swivels
 - 3. Measurements precision
- 3. Applications
- 4. Conclusions

Preliminary Hybrid Simulation:

- Flexible specimen
- 3 DOF (X, Y & Rx)
- Unstable control (large oscillations)

$$M\ddot{u} + C\dot{u} + [K_S u + Friction] = -m\ddot{g}$$

Friction characterization:

X Force, Combined Specimen Response (linear) and Friction

Friction in One Vertical Actuator Swivel vs Actuator Load

Contact Surface

Actuator in Compression

Actuator in Tension

^{*} When specimen is in tension, actuator is in compression and vice-versa

Mitigation Techniques: Friction Compensator

- Negative friction model (add negative stiffness!!!)
 - OpenSEES model of MDHTS (Ali Imanpour)

Mitigation Techniques: Feefback Instabilities

- Polynomial smooting of feedback signals
 - Quadratic function in MTS controller

Bridge Pier, H=2.75m

Youness Mechmachi (2016)

$$M\ddot{u} + C\dot{u} + [K_S u + Friction] = -m\ddot{g}$$

Mitigation Techniques: Load Cells

One approach was to add 64 load cells to measure friction at each end of actuator swivel and compensate in real time.

Mitigation Techniques: Real-time friction computation

Plan

- 1. MDHTS System
- 2. Challenges:
 - 1. System stiffness
 - 2. Friction in actuator's swivels
 - 3. Measurements precision
- 3. Applications
- 4. Conclusions

Challenges: Measurements precision

Stiff specimen vs. encoder's resolution

Original resolution: 0.02500 mm

→ Unstable control

Upgraded resolution: 0.00076 mm

→ Stable control

Plan

- 1. MDHTS System
- 2. Challenges:
 - 1. System stiffness
 - 2. Friction in actuator's swivels
 - 3. Measurements precision
- 3. Applications
- 4. Conclusions

Applications:

Hybrid Simulation Testing:

- □ Computational driver
 - Finite element model (OpenSees)
- □ Physical testing system
 - •MTS FlexTest 200 controller
 - Experimental equipment: MDHTS
- □ Middleware
 - OpenFresco
- ☐ Interfaces between OpenFresco & Flextest controller
 - •MTS Computer Simulation Interface (CSI)
 - Mathworks Simulink Platform (xPC Target)

Application: Concrete C-shape wall

Application: Concrete C-shape wall

Sound specimen: (Youness Mechmachi)

(November 2017: 89hrs test)

Carbon-fiber repaired specimen: (Hamid Arabzadeh)

(March 2018: Tested yesterday!)

Application: Concrete C-shape wall

Application: Multi-Tiered Braced Frames

Application: Multi-Tiered Braced Frames

Conclusions

- Testing facility fully operational for multi-directional hybrid simulation testing (6 DOF) of large-scale structural components
- Test programs successfully completed on steel columns and concrete structural members
- Local displacement control must be used to obtain realistic deformations
- Friction removal AND smoothing of force's feedbacks must to be combined
- 6 DOF Hybrid simulation testing on stiff specimens is highly sensitive to system accuracy (noise level) and precision (resolution) to achieve convergence

Acknowledgements

- UC Berkeley PEER for OpenSees and OpenFresco
- Industrial partners: MTS Systems Inc.
 (Special thanks to Dr. Shawn You)
 LCL Bridge Products Ltd
- Research Engineer Romain Siguier and Technical staff of the laboratory at Polytechnique Montreal
- Researchers from Polytechnique Montreal: Youness Mechmachi, Yasaman Balazadeh-Minouei, Prof. Robert Tremblay and Prof. Najib Bouaanani
- Researchers from McGill University: Ahmed Elkady and Prof. Dimitrios Lignos
- Researchers from Concordia University: Hamid Arabzadeh and Prof. Khaled Ghalal
- Funding from Natural Sciences and Engineering Research Council of Canada (NSERC), Quebec Funds for Nature and Technology (FRQNT), Canadian Foundation for Innovation (CFI) & Government of Quebec

Thank you