# Hybrid Simulation of Energy Generation from Ocean Waves



Nigel Kojimoto nigel@calwave.org

Thomas Boerner thomas@calwave.org



Selim Günay selimgunay@berkeley.edu



#### Outline

- Introduction to Wave Energy Conversion
- Why is Hybrid Simulation for Wave Energy Conversion?
- Computational Domain: Simulation Side
- Physical Domain: Constructed Power Take-Off Specimen
- Domain Coupling & Hybrid Simulation



#### Introduction to Wave Energy Conversion



**Energy Density** 



**Baseload** 



Well predictable



**Huge Potential** 



**CO2 Neutral** 



**High Efficiencies** 







#### Introduction to Wave Energy Conversion













- → Multiple full scale projects failed in the past
- → Currently no commercial wave power plant in the world



#### Introduction to Wave Energy Conversion





#### Power Conversion Chain



Hydraulic power conversion chain (PCC) selected



#### Why Hybrid Simulation?

- Full-Scale machines are very large & expensive
- De-risking of every sub-component required before scaling up but ocean testing for realistic scenarios difficult/impossible
- Power Conversion Chain behavior & efficiency is inherently coupled with the wave absorber behavior
- Exp. assessment of entirely uncoupled components not possible
- Power Conversion Chain requries complex control and safety mechanisms to be tuned
- Tune and test in safe laboratory environment





#### WEC Hybrid Simulation Overview





#### Computational Domain Overview



- Pre-Processing
- Fluid-Structure Interaction

- Kinematics
- Real-Time Runtime



#### Computational Domain Overview

$$m\ddot{X} = F_{ex} + F_{rad} + F_{rad}$$





#### Physical Domain



## **Desirable Power Conversion Characteristics**

- Convert low speed, high force oscillations into grid compatible electricity
- Include some form of power smoothing/temporary energy storage
- Control force with respect to velocity
  for increased power capture efficiencies (controllable damping properties)



### Hybrid Physical Experimental Setup







### Constructed Hydraulic PCC







# **Hybrid Simulation System**



## **Preliminary Results**



- Wide range of forces achieved
- Preliminary force tracking successful





## Next Steps

- Ocean demonstration project funded by DOE
  - Design iteration of PCC
    - Improve component efficiencies
    - Add control states to improve tracking
    - Add restoring force element to PTO (Spring)
  - Reduce computational domain's simulation time for smaller hybrid timesteps
  - Run more wave cases in hybrid experiments
- Apply for NSF STTR Phase II
  - Full Scale PTO Development?



# Thank You

