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Why are Models Necessary?

 Advanced Testing Requires Multidisciplinary Knowledges

 Structural Engineering

 Computational Mechanics

 Control Theory

 Physics or phenomenological modeling

 Real-time Computing

 Embedded System

 Sensors and Actuators

 System Modeling
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Why are Models Necessary?

 Structural testing systems are dynamically complex :

 Actuator servovalves have significant nonlinearities

 Test specimens are often very heavy and underdamped, interacting 

greatly with actuator mechanical response

 Hydraulic flow demand is high, causing pressure drops that affect 

actuator response

 Significant modal cross-coupling exists between multiple actuators 

through specimen with its own dynamics

 Real-time hybrid system imposes stringent criterion on high 

precision motion control, which requires system models

 No iterative control is allowed

 Models can help answer two questions:

 Capacity - can the test be performed at all? 

 Fidelity - how well can the test be performed?
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What Effects can be Modeled?

Table Dynamics

Rigid body in 6 DOFs

Actuator bowstring resonance

Actuator Dynamics

Unequal area effects

Variable volume effects with piston stroke

Volumetric and compressibility flows

Cross-piston leakage flow

Parasitic damping

Additional trapped oil volume

End cushion profiling

Seal friction

Static support

Specimen Dynamics

Rigid mass

One modal mass

One 6 DOF static force to ground

One 6 DOF spring to ground

One 6 DOF linear/nonlinear damper to ground

Servovalve Dynamics

Bandwidth limitations

Spool overlap and underlap

Flow gain variation due to

Flow saturation

Supply/return pressure variations

Pressure switching

Hydraulic System Dynamics

Pump flow limits

Pressure losses

Pump droop

Piping resistive losses

Line accumulators

Blowdown accumulators

Scalability

Any number of DOFs (including just one)

Any number of actuators (incl. just one)

Any number of accelerometers (incl. none)

Actuators can be any of five types

in any combination
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controller

Plant dynamics model

Dynamical System Modeling with Simulink

Models are implemented in the Simulink™ modeling environment
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FlexTest

control

components

in S-function

format

FlexTest Controller Simulink Model
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Actuator Plant Dynamic Model

Servovalve Dynamics

Bandwidth limitations

Spool overlap and underlap

Flow gain variation due to:

Flow saturation

Supply/return pressure variations

Pressure switching

Actuator Dynamics

Unequal area effects (incl. single-area)

Variable volume effects with piston stroke

Volumetric and compressibility flows

Cross-piston leakage flow

Parasitic damping

Additional trapped oil volume

End cushion profiling

Seal friction
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Characterize the dynamic interactions between loading system and testing 

specimen, which has its own dynamics

9

Specimen Modeling with ADAMS
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ADAMS - Multibody Dynamics (MBD) Software

 Model moving parts, motions, forces, and joints of a test system and 

specimen 

 Model flexible parts through Modal Neutral File from FEA model
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 ADAMS models mechanical parts, joints, bushings, dampers.

 Simulink models hydraulic elements and controller.

 ADAMS export the plant model to be integrated into Simulink model.

 Simulink model provides actuator forces to ADAMS model.

 ADAMS model provides actuator displacement and velocity based upon 

the actuator forces provided by the Simulink model.

ADAMS and Simulink Co-Simulation

11
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ADAMS Model

Integration in Simulink Model

12
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Modeling with parametric and non-parametric uncertainties

Robust Modeling

Frequency Response Function (FRF)                                              Step Response
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Actuator Motion Control/Compensation Techniques
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Basic idea is an inverse compensation scheme, i.e. one that derives a compensator from 

the inverse dynamics of the system to be controlled.  

Assume the dynamic system can be described as

The inverse transfer function (non-proper system)

In the time domain the compensator is 

1515

Adaptive Feedforward Compensation (AFC)
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The coefficients are not known and are not constant, so they will be determined through an 

online adaptive optimization process.

=

The cost function

The optimal least square solution that minimize the cost function

Chae, Y., Kazemibidokhti, K., and Ricles, J.M., Adaptive time series compensator for delay compensation of 

servo-hydraulic actuator systems for real-time hybrid simulation, Earthquake Engineering and Structural 

Dynamics, 42(11), 1697-1715, 22 April 2013. 
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MTS improved the technique to use Recursive Least Square optimization, which requires 

much less computational resources for large window size. 

Recursive Least Square Optimization
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Real-Time HS with Single Table and Loading Actuator

Hybrid test performed by MTS, UC Berkeley, and Tongji

1818
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Actual Bridge Configuration (with foundation + soil)

1919
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Physical Test Specimen

(columns + isolators +

partial-weight bridge deck)

ExpBridge

Simplified Hybrid OpenSees 

Model of Bridge (Stage 2)

Soil

Remaining 

numerical 

mass

2020
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Shaker Table Displacement Tracking

2121
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Robust H-infinity Loop Shaping Optimal Control
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System output sensitivity and complementary sensitivity:

Control design goal: T0 I,       S0 0 

Transform closed-loop tracking design specification into open-loop gain shaping problem.

Shape the open-loop system gain (GH). High loop gain means better performance, but with

a tradeoff of reduced robustness.

2323

Robust H-infinity Loop Shaping Optimal Control
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Step 1: Design the open-loop system Gd(s) that specifies the target openloop gain

Step 2: Solve a H∞ optimization problem to synthesize a controller K(s)

Step 3: Primary controller combines K(s) with the pre-compensator W(s)

Step 4: Secondary low-pass filter F(s) in the feedback path 
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 Dynamically Coupled MIMO System

For SISO System:

Loop Shaping of FRF Magnitude

For MIMO System:

I/O Euclidean Norm

Loop Shaping of Maximum Singular Value
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H-infinity Control Performance
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Real-time Hybrid Simulation Validation
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Phase I Phase II Phase III

Real-time Hybrid Simulation with Damper Device
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1=1.95Hz, 2=11.21Hz                                                        1=2.75Hz, 2=15.85Hz
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SPECIMEN DYNAMIC COMPENSATION (SDC)

Originator: Brad Thoen
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SDC is a feedback compensator

 Removes the effect of a resonant specimen from the motion 

dynamics of a shake table – including over-turning moment.

 Restores the motion response to that of the bare table. 

31
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 Specimen reaction force as the feedback signal

 SDC augment actuator force by an amount equivalent to the 

specimen reaction force

 The table driving force is the correct amount to move the empty 

table

 Specimen reaction force can be obtained either

 From a load cell between specimen and table

 Or estimated through an observer using existing acceleration 

sensors

32

How SDC Works?
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 Test Rig at the University 

of Nevada-Reno

 30 ton mass is linked to 

test specimen using 

dynamic rated ball-joint 

swivels

 Provides a rigid low 

friction connection with no 

additional vibration

 Cantilevered steel column 

with “plastic deformation 

hinge” used to connect the 

specimen and table
Column Fn: 4 Hz;  Damping: ~1%

33

Field Test – Uniaxial Test
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Notes:

»“baseshear” is structural 

engineers word for 

“reaction force” 

»“baseshear sensor” 

(green): direct reaction 

force measurement 

»“baseshear observer” 

(red): reaction force 

estimated from table accels 

and delta-P sensors 

34
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Specimen  Fn and Damping

X Axis: 5.51 Hz, 0.99%

Y Axis: 7.63 Hz, 1.39%

35

Field Test – Biaxial Test
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Summary

 System modeling is important for dynamic testing. Gain system level 

understanding of testing stability limit and performance accuracy.

 Simulink – Control System Dynamics

 MBD – Mechanical System Dynamics

 FEA – Flexible Body Dynamics

 Advanced motion control strategies are enablers of complicated dynamic 

testing.

 Adaptive Feedforward Compensation (AFC)

 Robust H-infinity Loop Shaping Optimal Control

 Specimen Dynamic Compensation (SDC)


