

X. Shawn Gao, PhD PE

- > MTS Real-time Hybrid Simulation Solution
- Real-time Hybrid System Dynamical Stability Analysis
 - Single DOF Hybrid System Analysis
 - Multiple DOF Hybrid System Analysis
 - Demo Examples
- Real-time Hybrid Simulation with Reduced Order Model (ROM)

2

Summary

		_
be certain.	March 2018	

- Physical substructures also contribute damping and inertia effects to the overall structure
- Requires high-force, dynamic actuators and large hydraulic pumping systems
- Control methods and system modeling tools are current topic of advanced research

MTS Real-Time Hybrid Simulation Flow Chart

Powerful Controller & Software

- Ultra-low latency flow of data via SCRAMNet
- Command and feedback exchange linked directly to real-time test control processor
- Tuning and control techniques to ensure accurate force and motion
- \succ Safety limits provided for the hybrid simulation

be certain.	
-------------	--

SCRAMNet Reflective Memory

be certain.	March 2018

Shared Memory Network

Real-time Hybrid System Dynamical Stability Analysis

be certain. March 2018			
	be certain.	March 2018	8

Typical control system response
 Amplitude Roll-off
 Phase lag/delay

Phase lag/Delay is a major concern in real-time hybrid simulation as it introduces negative damping!

be certain.	

Reference system equation of motion (EOM) $M\ddot{x} + C\dot{x} + Kx = -M\ddot{x}_g$

$$(M_n + M_e)\ddot{x} + (C_n + C_e)\dot{x} + (K_n + K_e)x = -(M_n + M_e)\ddot{x}_g$$

Hybrid system equation of motion (EOM)

$$M_{n}\ddot{x} + C_{n}\dot{x} + K_{n}x + M_{e}\ddot{x}_{e} + C_{e}\dot{x}_{e} + K_{e}x_{e} = -(M_{n} + M_{e})\ddot{x}_{g}$$

Assume Δ and δt represent the amplitude and phase errors: $x = A \sin \omega t, x_e = \Delta A \sin \omega (t - \delta t)$ Linearized approximation using: $\sin(\omega \delta t) \approx \omega \delta t, \cos(\omega \delta t) \approx 1$

$$\begin{split} x_e &= \Delta A \sin \omega (t - \delta t) \approx \Delta A (\sin \omega t - \omega \delta t \cos \omega t) = \Delta (x - \delta t \dot{x}) \\ \dot{x}_e &\approx \Delta (\dot{x} - \delta t \ddot{x}) \\ \ddot{x}_e &\approx \Delta (\ddot{x} + \omega^2 \delta t \dot{x}) \end{split}$$

 $(M_n + \Delta M_e - \Delta \delta t C_e) \ddot{x} + [C_n + \Delta C_e + \Delta \delta t M_e \omega^2 - K_e] \dot{x} + (K_n + \Delta K_e) x = -(M_n + M_e) \ddot{x}_g$

Negative damping depends on the actuator control error, and the substructure partition.

10

be certain.

be certain.

March 2018

Reference system equation of motion (EOM)

$$\underline{\underline{M}} \cdot \underline{\underline{\ddot{x}}}(t) + \underline{\underline{C}} \cdot \underline{\underline{\dot{x}}}(t) + \underline{\underline{K}} \cdot \underline{\underline{x}}(t) = \underline{\underline{F}}(t)$$

Assume classical damping, the EOM can be solved in the modal coordinates (q) for the uncoupled modal equations:

$$\underline{M_q} \cdot \underline{\ddot{q}}(t) + \underline{C_q} \cdot \underline{\dot{q}}(t) + K_q \cdot \underline{q}(t) = \underline{F_q}(t) \qquad \underline{q}(t) = \begin{bmatrix} q_1(t) \\ q_2(t) \\ \vdots \\ q_N(t) \end{bmatrix} = \begin{bmatrix} A_1 \sin(\omega_1 t + \theta_1) \\ A_2 \sin(\omega_2 t + \theta_2) \\ \vdots \\ A_N \sin(\omega_N t + \theta_N) \end{bmatrix}$$

The solution in the natural coordinate (x) is:

$$\underline{x}(t) = \underline{\Phi} \cdot \underline{q}(t)$$

12

the matrix $\underline{\Phi}$ is the modal matrix and each column is the eigenvector of the corresponding mode shape.

$\blacktriangleright \text{Hybrid system equation of motion (EOM)}$ $\underline{M_n \cdot \ddot{\underline{x}}(t) + \underline{C_n \cdot \dot{\underline{x}}(t)} + \underline{K_n \cdot \underline{x}(t)} + \underline{M_e \cdot \ddot{\underline{x}}_e(t)} + \underline{C_e \cdot \dot{\underline{x}}_e(t)} + \underline{K_e \cdot \underline{x}_e(t)} = \underline{F}(t)$

Assume in the modal coordinates the amplitude and phase error Δ_i and δt_i for the *i*th mode:

$$\underline{x_{e}}(t) = \begin{bmatrix} x_{e,1}(t) \\ x_{e,2}(t) \\ \vdots \\ x_{e,N}(t) \end{bmatrix} = \underline{\Phi} \begin{bmatrix} q_{e,1}(t) \\ q_{e,2}(t) \\ \vdots \\ q_{e,N}(t) \end{bmatrix} = \underline{\Phi} \begin{bmatrix} \Delta_1 A_1 \sin[\omega_1(t-\delta_1)+\theta_1] \\ \Delta_2 A_2 \sin[\omega_2(t-\delta_2)+\theta_2] \\ \vdots \\ \Delta_N A_N \sin[\omega_N(t-\delta_N)+\theta_N] \end{bmatrix}$$

Obtain the linearized approximation using: $\cos(\omega_i \delta_i) \approx 1, \sin(\omega_i \delta_i) \approx \omega_i \delta_i$

$$\underline{x}_{e}(t) = \underline{\Phi\Delta}[\underline{q}(t) - \delta \underline{\dot{q}}(t)]$$

$$\underline{\dot{x}}_{e}(t) = \underline{\Phi\Delta}[\underline{\dot{q}}(t) - \delta \underline{\ddot{q}}(t)]$$

$$\underline{\ddot{x}}_{e}(t) = \underline{\Phi\Delta}[\underline{\ddot{q}}(t) + \omega^{2} \delta \underline{\dot{q}}(t)]$$

bo	oortoin	
	CELAIL	
	OOI COIL II	

Hybrid system equation of motion (EOM)

EOM in the modal coordinates:

 $\begin{bmatrix} M_n \cdot \Phi + M_e \cdot \Phi \cdot \Delta - C_e \cdot \Phi \cdot \Delta \cdot \delta] \ddot{q}(t) + \begin{bmatrix} C_n \cdot \Phi + M_e \cdot \Phi \cdot \Delta \cdot \omega^2 \cdot \delta + C_e \cdot \Phi \cdot \Delta - K_e \cdot \Phi \cdot \Delta \cdot \delta] \dot{q}(t) + \begin{bmatrix} K_n \cdot \Phi + K_e \cdot \Phi \cdot \Delta] q(t) = F(t) \end{bmatrix}$

Convert EOM back to the natural coordinates using $\underline{q}(t) = \underline{\Phi}^{-1} \cdot \underline{x}(t)$

$$\begin{split} & [\underline{M_n} \cdot \underline{\Phi} \cdot \underline{\Phi^{-1}} + \underline{M_e} \cdot \underline{\Phi} \cdot \underline{\Delta} \cdot \underline{\Phi^{-1}} - \underline{C_e} \cdot \underline{\Phi} \cdot \underline{\Delta} \cdot \underline{\delta} \cdot \underline{\Phi^{-1}}] \ddot{\underline{x}}(t) \\ & + [\underline{C_n} \cdot \underline{\Phi} \cdot \underline{\Phi^{-1}} + \underline{M_e} \cdot \underline{\Phi} \cdot \underline{\Delta} \cdot \underline{\omega}^2 \cdot \underline{\delta} \cdot \underline{\Phi^{-1}} + \underline{C_e} \cdot \underline{\Phi} \cdot \underline{\Delta} \cdot \underline{\Phi^{-1}} - \underline{K_e} \cdot \underline{\Phi} \cdot \underline{\Delta} \cdot \underline{\delta} \cdot \underline{\Phi^{-1}}] \dot{\underline{x}}(t) \\ & + [\underline{K_n} \cdot \underline{\Phi} \cdot \underline{\Phi^{-1}} + \underline{K_e} \cdot \underline{\Phi} \cdot \underline{\Delta} \cdot \underline{\Phi^{-1}}] \underline{x}(t) = \underline{F}(t) \end{split}$$

bo	oortoin	
	OOLUNI	

> 3-Story Prototype Structure

Story Height 1.8m Bay width 2.8m

Table	1:	Cross-seccional	dimension	of the	Structural	Specimen
-------	----	-----------------	-----------	--------	------------	----------

Structural Members	Dimension (mm x mm x mm x mm)
Column	H 145 x 145 x 8 x 10
Beam	H 140 x 100 x 8 x 10
Braces	H 100 x 100 x 6 x 10

$$K_{ref} = \begin{bmatrix} 184.2 & -115.2 & 14.3 \\ -115.2 & 201.3 & -94.9 \\ 14.3 & -94.9 & 81.7 \end{bmatrix} \frac{kN}{mm}$$

Xi'an Univ of Architecture and Technology

600	OOK	+010	
	1-1-1	1 HIL	1
		LOIL	

Hybrid Configuration (Worst Case Substructure Partition)

Numerical Substructure

Experimental Substructure

600	001	ーーー	\sim
		LOUI	

Seismic mass 7.3 metric tons per floor, dynamic modes 7.0Hz, 20.3Hz, and 34.1Hz 4% Rayleigh damping @ mode 1 & 2 Assume 1ms delay @ all modes in the hybrid implementation

Frequency Response Function (FRF)

System Poles

bo	oortoin	
	CHUAIL	
	JULI LULL	

Seismic mass 250 metric tons per floor, dynamic modes 1.2Hz, 3.5Hz, and 5.8Hz 4% Rayleigh damping @ mode 1 & 2 Assume various delay values in the hybrid implementation

			L
ho	COR	$t \sim$	L .
UE	UCL	La	L
\sim	001	$\sim \sim$	 L

be cortain			
March 2018 19	be certain.	March 2018	19

Example 1, Design Case B Virtual Hybrid Simulation Results

be certain.	March 2018	20

Hybrid System Analysis

Seismic mass 7.3 metric tons per floor, global modes are 1.8Hz, 6.7Hz, and 13.4Hz 4% Rayleigh damping @ mode 1 & 2 Assume various delay values in the hybrid implementation

22

be certain.

March 2018

Virtual Testing Results

be certain.		March 2018	23
	<u></u>		

Real-time Hybrid Simulation with Reduced Order Models

be certain.	March 2018	24

In many cases, FEA models are too complicated to run in real-time. However, the specimens are rate dependent. Therefore, real-time hybrid simulation is a must. The solution is Reduced Order Model (ROM).

be certain.	March 2018	25

$$M_{p}\ddot{X}_{p} + C_{p}\dot{X}_{p} + K_{p}X_{p} = K_{p}\Gamma x_{n} + C_{p}\Gamma \dot{x}_{n}.$$

$$\begin{bmatrix} \dot{X}_{p} \\ \ddot{X}_{p} \end{bmatrix} = \begin{pmatrix} 0_{p \times p} & I_{p \times p} \\ -M_{p}^{-1}K_{p} & -M_{p}^{-1}C_{p} \end{pmatrix} \begin{bmatrix} X_{p} \\ \dot{X}_{p} \end{bmatrix} + \begin{pmatrix} 0_{p \times 1} & 0_{p \times 1} \\ -M_{p}^{-1}K_{p}\Gamma & -M_{p}^{-1}C_{p}\Gamma \end{pmatrix} \begin{bmatrix} x_{n} \\ \dot{x}_{n} \end{bmatrix}$$

$$F_{p} = (k_{n+1} \ 0_{1 \times p-1} \ c_{n+1} \ 0_{1 \times p-1}) \begin{bmatrix} X_{p} \\ \dot{X}_{p} \end{bmatrix} + (-k_{n+1} - c_{n+1}) \begin{bmatrix} x_{n} \\ \dot{x}_{n} \end{bmatrix}$$

Convert higher order dynamic model into 1st order state space model
 State space model can easily be integrated with other dynamical components, for system analysis and control design purposes

26

Low computational cost to facilitate real-time execution

- State space ROM constructed offline from ANSYS
- Hard real-time hybrid simulation, 1024 Hz simulation rate

- Dynamical analysis approach is needed to gain system level understanding about real-time hybrid simulation.
- The hybrid system negative damping not only depends on the actuator control error, but also on the substructure partition.
- The hybrid system EOM can be used with virtual testing procedure to predict the real testing stability limit/performance.

30

ROM is an effective technique for real-time hybrid simulation

be certain.	March 2018