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Introduction

Multi-stage friction pendulum systems (MSFPs) are cur-
rently being designed and developed as seismic isolation
devices for a wide range of structural and non-structural
systems. [1]

Figure: An overview image of an example of a Triple
Friction Pendulum (TFP).

While current models have come a long way, no current
model for MSFPs utilizes a rigorous setup for the kine-
matics of the internal sliders; they start directly with
scalar equations. Another drawback of current models,
is that no one model incorporates the full kinetics of the
MSFPs with bi-directional motion; there is either full
kinetics for planar motion or bi-directional motion with
only kinematics and no kinetics.

Modeling
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Figure: Diagram of a Triple Friction Pendulum (TFP)
model.

Modeling of the TFP is done with a set of 1-2-3 Euler
angles to define the kinematics of each bearing with re-
spect to the previous bearing. And the Euler angles are
used to define a set of co-rotational basis vectors for each
bearing.
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Figure: Locations of the co-rotational basis vectors for
the first two bearings.

Normal Forces
New set of 1-2 Euler Angles to define Normal forces

t̃1i = R̃1t1i , t̃2i = R̃2t2i , t̃3i = R̃3t3i , t̃4i = R̃4t4i

R̃1 = R(ψ̃1, θ̃1; t1i), R̃2 = R(ψ̃2, θ̃2; t2i)
R̃3 = R(ψ̃3, θ̃3; t3i), R̃4 = R(ψ̃4, θ̃4; t4i)

r̃1 = r1c − R1t̃13, r̃2 = r2c − R2t̃23
r̃3 = r3c + R3t̃33, r̃4 = r4c + R4t̃43

N1 = N1t̃13, N2 = N2t̃23, N3 = N3t̃33, N4 = N4t̃43

Friction Forces
Ff1 = −µ1N1f̃1, Ff2 = −µ2N2f̃2,
Ff3 = −µ3N3f̃3, Ff4 = −µ4N4f̃4

f̃1 = Y1t̃11 + Z1t̃12, f̃2 = Y2t̃21 + Z2t̃22
f̃3 = Y3t̃31 + Z3t̃32, f̃4 = Y4t̃41 + Z4t̃42

Use a modified Bouc-Wen model for biaxial hysteresis [2]

Ẏ1 =
R1

R0

(1− a1Y
2
1)ũ1 − b1Y1Z1ṽ1

, a1 =

1, Y1ũ1 > 0

0, Y1ũ1 ≤ 0

Ż1 =
R1

R0

(1− b1Z
2
1)ṽ1 − a1Y1Z1ũ1

, b1 =

1, Z1ṽ1 > 0

0, Z1ṽ1 ≤ 0

Contact Forces
s1 = R1 cos−1

t13 · t23
, s2 = R2 cos−1

t23 · t33


s3 = R3 cos−1
t33 · t43

, s4 = R4 cos−1
t43 · t53



g1 = sc1−s1, g2 = sc2−s2, g3 = sc3−s3, g4 = sc4−s4

γ1 = ġ1, γ2 = ġ2, γ3 = ġ3, γ4 = ġ4

Fc1 =

0 , g1 > 0

kc1g1 + cc1γ1 , g1 ≤ 0

Fc1 = Fc1f̄1, Fc2 = Fc2f̄2, Fc3 = Fc3f̄3, Fc4 = Fc4f̄4

Result and discussions

Uni-directional Motions
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Figure: Hysteresis loop for uni-directional motions for
ground motions in the five stages of motion.

Analytical† Experimental† Kinetic Model
u∗ (mm) 0.1 2 1.9
u∗∗ (mm) 38.4 42 49
udr1 (mm) 92.1 90 87
udr4 (mm) 130.4 130 134

Fdr1
N

0.161 0.173 0.175
Fdr4
N

0.240 0.272 0.275
† Analytical and Experimental values come from Regime V Data from [3]

Bi-directional Motions
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Figure: Hysteresis and force curves for a circular ground
motion with experimental results. [4]
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Figure: Hysteresis and force curves for a figure-eight
ground motion with experimental results. [4]

Summary and conclusions

The model presented here can work for both uni-
directional and bi-directional ground motions with no
linearization assumption. For that reason, in the case of
uni-directional ground motions, it was shown that the
nonlinear model can more accurately predict the experi-
mental values than previous analytical models. The only
assumption that the nonlinear kinetic model makes is
that the bearings are axisymmetric. Thus, this model
can be used to analyze the simplest, as well as the more
complicated ground motions that one would like to test.
The nonlinear kinetic model has the capability to be
connected numerically to models of different superstruc-
tures, such as frames, trusses, or any type of finite ele-
ment model. This allows one to model an entire system,
including the TFP, in one complete simulation, while
accounting for the non-linear and inertial nature of the
TFP.
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