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Challenges in simulating earthquake-induced ductile 
fracture in steel structures 

Introduction 
Fracture is a critical limit state that can precipitate structural failure and collapse, and must be considered in a reliability-
based performance assessment. But ductile crack initiation itself may not be correlated with the global structural 
response. Myers et al. (2009) indicates that ULCF initiated cracks may show significant stable propagation before brittle 
fracture occurs. This indicates a need for validated models and technologies to simulate ductile crack propagation under 
ULCF loading. 

 
 

Figures courtesy of Myers et al. (2009) 

1. Simulation of ductile fracture propagation under Ultra-Low Cycle Fatigue (ULCF): 
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Tests 

• Mesh Independent 
 

• Consistent parameters 
 

• No parameter fudging 
 

Approach 

• Ductile damage-based rupture criteria 
• Cohesive zone-based material destruction 

Void Growth Coalescence and rupture 

Solid 
Element 

Cohesive element 

2. Predicting ductile fracture in the presence of spatial variability in toughness: 

Introduction 
Micromechanical fracture models are increasingly used for predicting ductile fracture in 
structural steel components. Methods to apply these models presume that structural 
components are spatially homogeneous in terms of material toughness. This presumption 
conflicts with experimental evidence that shows significant variability in material toughness. 
Consequently, accurate and rigorous evaluation of fracture uncertainty is not possible with 
the current framework. 
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Fracture fragility of structure 
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Simulation of Prototype-scale Bending Plates 
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Increasing 𝜆 

• Prototype-scale bending plate 
• Same parent distribution of 

toughness can have different internal 
correlation structure 

• Semivariogram representation, with 𝜆 
material correlation radius 

Results 
Median Fracture Deformation Δ𝑓 (mm) 

Correlation Radius 𝜆 (mm) 

Median Fracture Deformation Δ𝑓 (mm) 

Normalized Scale 𝑏/𝜆 

1. Large degree of 
sensitivity of Δ𝑓 to 𝜆 

 
2. Indication of statistical 

size effect 
 

3. Scaling issue between 
lab-scale coupons and 
archetype scale 
components 
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