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INTRODUCTION

METHODOLOGY

Structural health monitoring (SHM) is necessary to monitor the structural integrity and MACHINE LEARNING TOOLS

assess deterioration for safe and continuous operation of these infrastructures. Advances in
remote sensing, computing technologies, and data science in the past few years paved the way
to develop SHM techniques that can assess and quantify the condition of structures in near-
real time utilizing machine learning techniques.

To assess damage for a given structure, three machine learning approaches are considered.
All these techniques are probabilistic statistical classification models The probabilistic
nature of these methods makes them better suited for this problem of damage assessment.
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