A METHODOLOGY FOR BENCHMARKING LOSS PREDICTIONS OF THE FEMA P-58 SEISMIC **PERFORMANCE ASSESSMENT PROCEDURE**

Stanford ENGINEERING

Civil & Environmental Engineering

Student Investigator: Gemma Cremen Advisor: Jack W. Baker The John A. Blume Earthquake Engineering Center, Stanford University

Introduction

As performance-based earthquake engineering (FEMA P-58) becomes more widely adopted in design and risk analysis practice, it is important to determine the degree to which the calculations reflect reality.

Overview of the Methodology

The methodology is intended to evaluate P-58 componentlevel loss predictions across a group of buildings subjected to a given seismic event, using postearthquake survey damage data collected.

Observed Component Damage Data

New Zealand Level 2 Rapid Assessment Form

se Chr nspector Initials erritorial Authority		rch Eq R/	APID As Date Time	Structural Hazard's/ Damage >Foundations Roofs, floors (vertical load) Columns, pilasters, corbels Diaphragms, horizontal bracing	Minor/None	Moderate	Severe				
Building Name							Pre-cast connections				
Short Name			. Туре	of Construction			Beam				
Address				Timber frame Steel frame		Concrete shear wall Unreinforced masonry	Non-structural Hazards / Damage Parapets, ornamentation				
GPS Co-ordinates	Sº	Eo		Till-up concrete		Reinforced masonry	Cladding, glazing				
Contact Name	0.	L.					Ceilings, light fixtures				
				Concrete frame		Confined masonry	Interior walls, partitions				
Contact Phone				RC frame with masonry infill	L	Olher:	Elevators				
Storeys at and above ground level		Below ground	Prim	ary Occupancy Dwelling	П	Commercial/ Offices	Stairs/ Exits				
Total gross floor area		level Year					Utilities (eg. gas, electricity, water)				
(m ²)		built		Other residential		Industrial	Other				
No of residential Units				Public assembly		Government)Geotechnical Hazards / Damage Slope failure, debris				
				School		Heritage Listed	Ground movement, fissures	П	П		
Photo Taken	Yes	No		Religious		Other	Soil bulging, liquefaction				

Example Application of the Methodology

- 95 buildings subjected to the 2011 M_W 6.1 Christchurch earthquake in New Zealand
- All reinforced concrete structures
- Ages range from > 46 to < 8 years
- Benchmarking predictions of elevator damage

Conclusions

We developed a methodology for benchmarking componentlevel loss predictions of the FEMA P-58 seismic performance assessment procedure across a group of buildings subjected to a given seismic event, using categorical damage data collected in postearthquake damage surveys.

The methodology uses statistical tools that specifically enable comparison of categorical and numerical data. Ground shaking intensity acts as a benchmark to investigate whether P-58 loss predictions are more powerful predictors of damage than variations in shaking between buildings.

We apply the methodology to a group of buildings in the 2011 M_W 6.1 Christchurch earthquake. We find that P-58 loss predictions of elevator component damage perform better than the ground shaking benchmark, suggesting that FEMA P-58 provides benefit over simply using ground shaking intensity as a predictor of damage.

The methodology offers a promising initial understanding of the degree to which performance-based earthquake engineering calculations reflect real-life seismic events.

Acknowledgements

We thank Dr. Ken Elwood for sharing the New Zealand Rapid Assessment data used in our example.

