
Introduction
Ensuring the resilience of civil structures against seismic and other hazards requires accurate 
performance assessment of structures and their anticipated inelastic response under extreme 
loading conditions. State-of-the-art simulations of extreme limit states in structures face numerical 
challenges that preclude rigorous prediction of softening (degrading) structural response: 
sensitivity to the finite element mesh size and spurious localization of the deformation field. The 
nonlocal continuum theory is adopted to enhance reinforced concrete frame models and enable 
robust simulation of response degradation and structural collapse.

Theory and implementation
• The nonlocal theory imbeds a physically meaningful characteristic length into the simulation 

model to eliminate mesh sensitivity and spurious strain localization.
• The nonlocal formulation is implemented in fiber-based frame-element models in the open 

source analysis platform OpenSees.
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Results

Conclusions
• Implementation of the nonlocal theory into 

reinforced concrete frame-element models 
enables robust simulation of concrete 
damage and response degradation, while 
maintaining the computational efficiency of 
frame elements.

• Mesh sensitivity and spurious localization of 
the deformation are eliminated, and a 

characteristic length scale is imbedded into 
the model to inform the size of the plastic 
hinge. This characteristic length should be 
informed by material properties.

• Ongoing work extends the current 
formulation to incorporate the damage of 
steel rebar in the column (rebar buckling in 
compression or fracture in tension).
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Fiber-based nonlocal formulation for simulating 
softening in reinforced concrete beam-columns
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The nonlocal model was validated against a suite of 24 cyclic 
experimental tests on RC columns. Representative results are displayed.
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