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Background and Motivation Fatigue-fracture model Fracture fragility
Rebar strain history > FI vs. strain history > Fracture probability
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* Quantify duration effects on structural response demands, 1.e., lateral drift, steel strain, and Loading steps Steel strain (%) Probability of fracture
fracture potential.
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* Gr. 100 bars, in overall, showed 10% fewer half cycles to fatigue than Gr. 60. 1 . . . Ds; 75 = 38.9 sec
* Fracture resistance also depends on manufacturing process techniques. 0 50 100 , 150 200 250 300
Time (sec) T (sec)

* Fatigue life is impacted by the slenderness (s/d,): buckled bars are more prone to fracture.

Example: 20-Story RC Frame

Proposed Fatigue-Fracture Model * Archetype 20-story RC frame in FEMA-P695 was redesigned with Gr. 100 reinforcement but

* Observed trend from 206 low-cycle fatigue tests with different grades, T/Y ratios, s/d.’s, to the same strength. IDA analyses were conducted under the 88 GM set.
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Calibrated o Fracture index (FT) * Relate the fracture potential to story drift ratio demands and quantify the influence of duration on
- - - rebar fracture demands.
Validation of Fatigue-Fracture Model * Incorporate duration etfects into seismic performance assessment and design guidelines of
* Fiber element analyses: flexure + shear + bar-slip behavior reinforced concrete bridges.
* Fracture Index (FI) is calibrated to 1.0 at observed fracture point in 16 beam/column tests.
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* A new rebar fatigue-fracture model was proposed and validated for assessing fracture probability
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- < < N AN
+ 7)) v N\ \\"'-"x\ \
e tiS:e“ 0 2 E YR Acknowledgement
€t sectio @ OLT b S ANy 1 : : :
= S ‘;{:\‘.-g\-“g:x\& RN This research 1s supported by the PEER — TSRP (S82), the Charles Pankow Foundation, and the Blume Center for
Zero-length section 0 R Earthquake Engineering. The authors gratefully acknowledge researchers associated with ACI HS reinforcement
clement for bar-slip oogl L L[] working group. In particular, the authors thank Reagan Chandramohan, Wassim Ghannoum, Andreas LePage, Dominic
responses 6543210123456 7 6543210123456 7 Kelly, Andrew Taylor, David Fields, Ron Hamburger, and Jack Moehle for their support and help. Great appreciations
Lateral drift (%) Lateral drift (%) Stanford/Blume Center for use of the Sherlock computing cluster at Stanford University.

This project was made possible with support from:

MI‘ ; PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER
)

UC Berkeley « Caltech - OSU « Stanford « UC Davis « UC Irvine « UC Los Angeles « UC San Diego « UNR - USC « U Washington

peer.berkeley.edu



