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London Bridge Station
200,000-250,000 passengers/day
55 million passengers per year

» Oldest station in London — First built in
1836
. * Five Year Improvement Programme,
' while running its regular service
* 6.5 billion pounds
« Started in 2013
» For longer trains and more frequent
services
* 50% increase in passenger
* 66% more space
24 trains per hour by 2018
The Iargest concourse in the UK
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Temporal concentration of twitter presence 20m from
Rail compared to rail trips in progress from NTS2012
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Ultra low power wweless sensor network

Imai siEe

B - and ruw E E - .v o Dusigiowd and
a: cPu Marfuc turd Graet
power = Beitaln
A S— . _‘ -
RS—— emperature
Accelerometer

X =004

=002
I= -0 0d

Humidity
Th%

Scattered light power



Parametric at
2f, @

LA RS RTRENY

¥ »
L L Y S SR L]

<~ Direct at f,

----
.......




Sensor development - Trend

« Better accuracy, resolution and precision
«  “Point” sensors to “Distributed” sensors

« Wider coverage

« Smaller and low power

* More dynamic (faster data acquisition)

* More robust

« Better communication (wireless)
 Long performance

N Satellite monitoring

Large (100 km)
‘ Distributed fiber optic sensing
ﬂ LIDAR
Coverage
Wireless
Miniature point sensor
Small (1m)
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A Bigger Picture....
The Value of Sensing needs to be evaluated.

CITY-SCALE SYSTEM OF SYSTEMS

- What economic value does our infrastructure create?

— How does our infrastructure best serve our
communities?

- What form should our infrastructure take?

Cities &
infrastructure
systems LIFETIME VALUE OF INFRASTRUCTURE
- How do we operate, manage & maintain our assets to deliver
best whole life value?
Value of - How do we futureproof our assets against changing
Infrastructure requirements & against shocks?
- What decisions? what information?
Assets
N EFFICIENT ANALYSIS AND INTERPRETATION IN
" Information REAL TIME
) requirements & - How do we best design, construct & monitor our structures
=gl to deliver the performance we need?
Data analysis & - What data do we need to do this, & how do we interpret it?

interpretation

ROBUST SENSOR SYSTEMS

- What sensors do we need?

- How can we make them robust?

- Reliable, robust systems for data collection
— Standards to enable interoperability

Be l Sensors & data
collection
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Goal: Moving from single bridge fragility to corridor fragility

Multiple bridges

Embankment fills
Liquefaction

Slope failure

Consider impact of alternative routing

How do we prioritize which corridors to strengthen?

Scenario Planning will be a critical tool in reaching
consensus

Glérans

Tom Shantz



Macro View
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High Performance Computing and Graph Database

Data-Parallel Graph-Parallel
ol 2 s,
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Table |

Property Graph
~ = - Graph MapReduce
/i\ - In-memory cluster computing

; | - Decentralised data structures

- Graph size
- ~250k nodes
- ~800k edges

- ~1.5GB .gml to 43MB .json.gz
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Crowd sourced data
Google Travel time distributions

i i e Tih-13th March, 2016
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Travel time distributions

Journey time disinbution Tih-13th March, 2016
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Travel time distributions
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A208, Chiselhurst. Newshopper.co.uk, 2016
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Context specific volume-delay functions
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Journey times - exploring the temporal dimension with GPS data

Emerging behaviour, cascading behaviour, reactive & adaptive agents....
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ABM Model Capability and Performance

The London ABM:
1. 250,000 nodes and 800,000 links

2. 300,000 agents with personal attributes;

3. An agent searches for (weighted) shortest routes based
on traffic condition simulation results from the last time
step. The graph (the link-level weight created by traffic) is
updated at 30 minutes interval.

4. Using 6-node Microsoft Azure HD Insight (Apache Spark)
cluster (2 master nodes and 4 compute nodes)
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—

. Modeling traveler behaviors
2. Simulating traffic congestions due to the excessive travel
demand in the urban road network;
3. Modeling dynamic traffic distributions under emergencies
such as infrastructure failure.
No bridge closure

Bridge closure

*

Berkeley

HNIVERSITY OF CAlIFDRNIA Big increase in congestion around bridge



Iterative decision making models

Decision
making
Model

a4
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+ disruptive event
{sudden precipitation}

Data

In Real-time —

— How should transit

operators respond
locally and globally?

How should traffic lights
respond?



1. Data from OpenStreetMap
2. 380,000 nodes and 500,000 links
3. Interactive demonstration at http://sf.cb-geo.com:3000/
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Routing before and after Bay Bridge Closure
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City-scale interaction simulation between Water Pipeline
Network and Traffic network

1. Water pipeline network: JJ“ Jii
— EBMUD 108,676 pipes
— LADWP 300,000 nodes PEER
2. Hydraulic Analysis (Head loss) simulations: Kenichi Soga
—_ 300,000 nodes Joan Walker
Alex Bayen
— 4 GPUs Pascal P100 Jack Baker

— Matrix Assembly 2 sec, Solver 1 sec.
— 1000 scenarios — 40 minutes

3. But better Visualization is needed to make
decisions by different stake holders
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Summary

* Innovation in sensors as part of Internet of Things
* Need to quantify the value of sensing for smart infrastructure

* Micro-simulations at the city scale is becoming possible
— Agent based model for traffic modeling
— Dynamic water flow modelling

* Thanks to recent developments in high performance computing
and graph database.

* Opportunity to model large scale systems in real time

— Rapid recovery scenario testing after an event (e.g.
pipeline bursts after EQ)
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